
Further information on publisher’s website:
https://doi.org/10.1016/j.quascirev.2017.06.003

Publisher’s copyright statement:
© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Ice sheet retreat and glacio-isostatic adjustment in Lützow-Holm Bay, East Antarctica

Elie Verleyen1*, Ines Tavernier1*, Dominic A. Hodgson2,3, Pippa Whitehouse3, Sakae Kudoh4, Satoshi Imura4, Katrien Heirman5, Michael J. Bentley3, Steve J. Roberts2, Marc De Batist5, Koen Sabbe1, Wim Vyverman1

1\textit{Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Campus Sterre, Krijgslaan 281 - S8, B-9000 Ghent, Belgium}

2\textit{British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK}

3\textit{Durham University, Department of Geography, South Road, Durham DH1 3LE, UK}

4\textit{National Institute of Polar Research, 10-3, Midoricho, Tachikawa, Tokyo 190-8518, Japan}

5\textit{Renard centre of Marine Geology, Ghent University, Campus Sterre, Krijgslaan 281 - S8, B-9000 Ghent, Belgium}

*equal contribution

Author for correspondence: elie.verleyen@ugent.be
Abstract
The East Antarctic Ice Sheet has relatively few field data to constrain its past volume and contribution to global sea-level change since the Last Glacial Maximum. We provide new data on deglaciation history and develop new relative sea-level (RSL) curves along an 80 km transect (from Skallen to Skarsvnes, Langhovde and the Ongul Islands) in Lützow Holm Bay, East Antarctica. The geological constraints were compared with output from two Glacial Isostatic Adjustment (GIA) models. The minimum radiocarbon age for regional deglaciation is c. 11,240 cal. yr BP on West Ongul Island with progressively younger deglaciation ages approaching the main regional ice outflow at Shirase Glacier. Marked regional differences in the magnitude and timing of RSL change were observed. More in particular, in Skarvsnes a minimum marine limit of 32.7 m was inferred, which is c. 12.7 m higher than previously published evidence, and at least 15 m higher than that reported in the other three ice-free areas. Current GIA model predictions slightly underestimate the rate of Late Holocene RSL fall at Skallen, Langhovde, and West Ongul, but provide a reasonable fit to the reconstructed minimum marine limit at these sites. GIA model predictions are unable to provide an explanation for the shape of the reconstructed RSL curve at Skarvsnes. We consider a range of possible explanations for the
Skarvsnes RSL data and favour an interpretation where the anomalously high marine limit and rate of RSL fall is due to reactivation of a local fault.

Key-words: Sea level changes; Antarctica; Holocene; Coastal geomorphology; Isolation lakes; Raised beaches; Glacial Isostatic Adjustment (GIA) Models; Neotectonics
1. Introduction

Estimates of the contribution of the continental ice-sheets to past and recent global sea-level change are still relatively imprecise (Bromwich & Nicolas 2010, Clark & Tarasov 2014). This is due to an incomplete understanding of changes in continental ice volume, including the maximum extent of glaciation, and the onset and rates of ice retreat. Some of this information can be inferred from radiocarbon dating of organic deposits that have accumulated after ice retreat, and from changes in relative sea-level (RSL) resulting from the glacio-isostatic response of the Earth’s crust to ice mass changes. Accurate RSL reconstructions, together with GPS-derived uplift data, can track regional changes in glacial isostatic adjustment (GIA) (Thomas et al. 2011, Hodgson et al. 2016), a process that contaminates satellite gravity measurements of present-day ice sheet mass balance (e.g., Chen et al. 2009, Shepherd et al. 2012, Williams et al. 2014). In regions where measurements of GIA are sparse, or where modelled estimates are not compared with geological constraints, large errors can be introduced into the GIA correction and hence the mass balance calculations (Velicogna & Wahr 2013). In Antarctica, the paucity of GIA constraints limits the accuracy of estimates of changes in the mass balance of the ice sheets derived from the Gravity Recovery and Climate Experiment (GRACE;
Velicogna & Wahr 2013, Clark & Tarasov 2014) as well as predictions of future ice sheet contributions to global sea-level rise (e.g., Adhikari et al. 2014). Increasing the spatial resolution of geological data on ice sheet retreat and RSL reconstructions is therefore a recognized research priority (e.g., Watcham et al. 2011, Bentley et al. 2014).

Post Last Glacial Maximum (LGM) changes in RSL in previously glaciated regions principally reflect three processes: eustatic sea-level rise, regional GIA, and neotectonic events (Stewart et al. 2000, Bentley et al. 2005). The latter are generally assumed to be only important in tectonically active regions (e.g., Pacific coastline of North America (Plafker 1972), the southern part of the Strait of Magellan and southernmost Tierra del Fuego (Bentley & McCulloch 2005)), and can be the dominant forcing of regional variability in RSL changes. However, post-glacial unloading and rebound can also lead to the formation or re-activation of faults in continental shields and hence tectonic activity in otherwise stable areas (e.g., Lagerbäck 1978, Risberg et al. 2005, Steffen et al. 2014). Therefore, if RSL changes are significantly influenced by neotectonic faulting, this needs to be taken into account when validating GIA models (Watcham et al. 2011).
Of all ice sheets, the Antarctic ice-sheets probably have the fewest
RSL field data (Bentley et al. 2014, Mackintosh et al. 2014). This has
resulted in a wide range of model-based estimates of Antarctic Ice Sheet
contributions to global sea-level since the LGM, varying from 35 m
(Nakada & Lambeck 1988) to 13.6 m (Argus et al. 2014), 9 ± 1.5 m
(Whitehouse et al. 2012a), and even 9 to 6 m (Gomez et al. 2013). Given (i)
the potential of the EAIS to raise global sea-level by up to 50 m
(Huybrechts 2002), and (ii) some studies suggest that the melting of the
EAIS might have contributed to the Eemian sea-level high stand, which
was 6 to 9 m higher than today (Kopp et al. 2009, Pingree et al. 2011),
identifying those areas of the EAIS that respond to Holocene and recent
climate changes is critical (Mackintosh et al. 2014).

Two complementary approaches are traditionally used to develop
RSL curves in Antarctica. The first one relies on radiocarbon dating of
marine fossils in raised beaches as direct evidence of former sea-level
changes (e.g., Berkman et al. 1998, Miura et al. 1998). The shortcoming of
this approach however, is that the organisms producing the shells used for
dating occur at different depths in the marine environment (Shennan et al.
2015). Dating fossils in raised beaches therefore typically provides
minimum constraints on the height of former sea-levels (Shennan et al.
The second approach is based on isolation lakes, which are natural depressions in the bedrock that have been inundated by and subsequently isolated from the sea as a result of RSL fall (Verleyen et al. 2004). The isolation event is identified by studying markers of marine and lacustrine phases, such as diatoms, fossil pigments and sedimentological changes (Watcham et al. 2011). The RSL curves are then derived from studying the timing of marine-lacustrine transitions in isolation basins situated at different altitudes (Zwart et al. 1998). The advantage of isolation basins is that the height of their sills can be measured with precision and that this height therefore provides a better vertical constraint compared with that of fossils in raised beaches (Takano et al. 2012). Moreover, because in isolation lakes the organic matter in the lacustrine sediments that are deposited in equilibrium with atmospheric CO\textsubscript{2} can be dated, problems associated with the marine radiocarbon reservoir effect can be circumvented (Hodgson et al. 2001, Verleyen et al. 2005). One drawback of the isolation basin approach is that during storm over wash events marine diatoms can be transported into the lake, which can complicate to discriminate between lacustrine and marine sediments (Verleyen et al. 2004). A second shortcoming is that in saline and brackish lakes in Antarctica, the diatom communities are similar to those in the Southern
Ocean (Verleyen et al. 2003), making it difficult to exactly identify the
transition from marine to lacustrine sediments based on diatoms alone.
However, despite the shortcomings of both approaches, they have been
successfully applied to develop RSL curves in parts of the Antarctic
Peninsula (Bentley et al. 2005, Hall 2010, Roberts et al. 2011, Watcham et
al. 2011) and a few ice-free regions along the East Antarctic coastline, such
as the Vestfold Hills (Zwart et al. 1998), Windmill Islands (Goodwin &
Zweck 2000), Rauer Islands (Berg et al. 2010, Hodgson et al. 2016), and
Larsemann Hills (Verleyen et al. 2005).
Here, we present new RSL constraints for islands and peninsulas in
the Lützow-Holm Bay region (Dronning Maud Land, East Antarctica,
Fig.1) based on two coastal lakes from Skarvsnes and five lakes from West
Ongul Island situated at different elevations, as well as new raised beach
data from Skarvsnes. We combined our data with recently published
records from an isolation basin on Skallen and one on Skarvsnes (Takano et
al. 2012), as well as with radiocarbon dates of fossils incorporated into
raised beaches on Skallen, Skarvsnes, Langhovde and West Ongul Island
(Miura et al. 1998; Fig.1). These geological constraints were subsequently
compared with regional predictions of RSL evolution and high stand from
two recently-developed GIA models, namely the ICE-6G_C model (Argus
et al. 2014) and the W12 model (Whitehouse et al. 2012a), in order to
assess the potential offset between modelling results and the near-field data.

2. Site description

Lützow-Holm Bay is part of Antarctic Drainage System 7 based on ICESat
data (Fig.1) and is the discharge point of one of the larger East Antarctic
glacier systems (Zwally et al. 2012), the Shirase Glacier, as well as of a
number of smaller glaciers (Miura et al. 1998). The bay includes several
ice-free peninsulas and islands composed of gneisses, metabasites, and
granites, together with thin beds of marble and quartzite (Tatsumi & Kizaki
1969). Different fault systems have been mapped, including one on
Skarvsnes and one between West and East Ongul Island (Ishikawa et al.
1976; Fig.1), but there are no records of neotectonic activity.

West Ongul Island is the largest ice-free island in the region. It is
separated from the Antarctic continent by a c. 600 m deep glacial trough
(Mackintosh et al. 2014) in front of the Langhovde and Hazuki Glaciers
(Miura et al. 1998), and from East Ongul Island by the 40 m wide Naka-no-
seto Strait. 14C dates of in situ fossils in raised beaches on the Ongul Islands
fall into two age classes; pre-LGM and Holocene. It has therefore been
suggested that this part of the region was ice-free during the LGM and
Marine Isotope Stage (MIS) 3 (Nakada et al. 2000), or even MIS 6-7 (Takada et al. 2003). The maximum Holocene marine limit for the region was estimated to be 17 m (10,590 +/- 160 14C yr BP; Miura et al. 1998).

Langhovde is one of the two main peninsulas in the region. It is situated to the south west of the Langhovde Glacier and to the north east of the Hønør Glacier (Fig.1). Marine fossils in the raised beaches are either of Late Pleistocene (or older) or Holocene age. The pre-Holocene ages are however only found on the northern part, which has led to the suggestion that this part was ice free during the LGM, whereas the southern part was probably ice-covered (see Mackintosh et al. 2014 for a review). The maximum Holocene marine limit has been estimated at 17 m (6,810 +/- 60 14C yr BP; Miura et al. 1998).

Skarvsnes is the second of the two largest peninsulas and is situated south of Langhovde in between glacial troughs in front of the Hønør and Telen Glaciers (Miura et al. 1998). All but one of the 14C-dated fossils derived from raised marine deposits on this peninsula are of Holocene age (Miura et al. 1998), suggesting that the region was ice-covered during the LGM. This is confirmed by a recent cosmogenic isotope dating campaign, which revealed that Skarvsnes emerged from at least 350 m of ice cover between 10 and 6 ka BP (Yamane et al. 2011). The maximum Holocene
marine limit at 8,440 +/- 140 14C yr BP was estimated at c. 20 m based on raised beach data (Miura et al. 1998).

Skallen is a smaller peninsula to the south west of Skarvsnes close to the Skallen Glacier (Takano et al. 2012). It lies to the north east of the Shirase Glacier which has created a large glacial trough in Lützow-Holm Bay. All the fossils sampled in raised beach deposits are of Holocene age and relatively recent. The maximum Holocene marine limit is at 12 m and dated at 4,720 +/- 90 14C yr BP based on raised beach data (Miura et al. 1998).

3. Material and methods

3.1. Geomorphological measurements, sampling of raised beaches and lake sediment coring

Three specimens of marine macrofossils (*Laternula elliptica*, and polychaete worm tubes) were sampled in raised beaches at different altitudes in Skarvsnes. Sill heights of the lakes and the raised beach deposits were surveyed using a Trimble 5700 base station GPS receiver cross-referenced to the IGS station at Syowa (code SYOG). As a test of the vertical accuracy, Geodetic Station No 39-02 was resurveyed giving an ellipsoidal height error of ± 0.97 cm. Altitudes were referenced to vertical
datum WGS84 with the EGM96 geoid separation ranging from 21.14 to 22.02 m (mean 21.62 m between the ellipsoidal height and the orthometric height). Where data could not be referenced to the IGS station, spot heights of the sills of the lakes were used from previous mapping surveys (Kimura et al. 2010). A 3 m vertical error bar was used when developing the RSL curves to account for differences between low and high tide in the region. This error bar was based on tidal gauge records measured between April 2010 and December 2011 (Aoyama et al. 2016).

Sediment cores were extracted from seven lakes at a range of altitudes above sea level. Five lakes were cored on West Ongul Island [Yumi Ike (WO1), Ô-Ike (WO4), Ura Ike (WO5), Higashi Ike (WO6), and Nishi Ike (WO8)] and two lakes on Skarvsnes [(Mago Ike (SK1) and Kobachi Ike (SK4)]; the codes refer to Tavernier et al. (2014) and Verleyen et al. (2012) in which more information on the limnological properties of the cored lakes can be found. All lakes were freshwater, except Kobachi Ike which was brackish (Tavernier et al. 2014). Sediment cores were extracted using a UWITEC gravity corer for surface sediments and a Livingstone square-rod piston sampler (Wright 1967) for intermediate to basal sediments. Bedrock or glacial sediments were present at the base of all the sediment cores.
3.2. Paleolimnological analyses

To identify marine to freshwater transitions in the sediment cores, multiple biological and sedimentological proxies were analysed. Gamma ray density (GRD) and volume-specific magnetic susceptibility (MS), converted to mass-specific MS, were measured using a Bartington 1 ml MS2G sensor for those cores which were transported unsliced. The total carbon (TC) content was quantified using a Flash 2000 Organic Elemental Analyzer. Measurements were carried out by dry combustion at high temperature (left furnace: 950°C and right furnace: 840°C; King et al. 1998). This was then followed by separation and detection of the gaseous products. The data were processed using the Eager Xperience software. Samples were all run at least twice to detect and exclude possible erroneous values. Outliers were excluded and the mean value of replicates was used. Reproducibility within and between different runs was tested using standards. Diatoms were prepared following standardized protocols (Renberg 1990), with absolute abundances calculated following Battarbee & Kneen (1982). Diatoms were counted under oil immersion using a Zeiss axiophot light microscope at a magnification of 1000x. At least 400 valves (>2/3 intact or at least unambiguously containing the middle part of the sternum for pennate
diatoms) were counted in each sample, except when concentrations were
too low to reach this number. In the latter case samples were first
concentrated and then slides were screened in their entirety. Taxonomic
identification was mainly based on Sabbe et al. (2003), Ohtsuka et al.
(2006), Van de Vijver et al. (2011) and Esposito et al. (2008) for the
freshwater diatoms, and Cremer et al. (2003) and Scott & Thomas (2005)
for the marine and brackish-water diatoms. Diatoms were grouped into
freshwater, brackish and marine species based on their weighted-averaging
conductivity optima as calculated in Tavernier et al. (2014).Species were
considered as freshwater taxa when their WA-optimum was below 1.5
mS/cm. Species were regarded as brackish-water taxa when their WA-
optimum fell between 1.5 mS/cm and 4.42 mS/cm (Tavernier et al. 2014).
In the sediment cores from the brackish lake (Kobachi Ike, SK4), fossil
pigments were additionally analysed, because in brackish and saline lakes
identifying the marine-lacustrine transition based on fossil diatoms is
sometimes complicated due to the presence of species shared between both
environments (Hodgson et al. 2006a). The fossil pigments were extracted
and analysed following Van Heukelem & Thomas (2001). The system was
calibrated using authentic pigment standards and compounds isolated from
reference cultures following Scientific Committee on Oceanic Research
(SCOR) protocols (DHI, Denmark). The identification of the pigments was based on Jeffrey et al. (1997) and pigments of unknown affinity were assigned as ‘unknown’ or as derivatives of the pigment with which they showed the closest match based on retention times and absorption spectra. Concentrations of individual pigments in the samples were calculated using the response factors of standard pigments. The abundance of the cyanobacteria pigments zeaxanthin, echinenone, and myxoxanthophyll is reported as a percentage of the total carotenoids (%). Myxoxanthophyll is exclusively produced by cyanobacteria and was therefore considered as the preferred marker pigment for this group, which are the dominant photoautotrophs in lacustrine microbial mat communities in East Antarctica (Hodgson et al. 2004, Verleyen et al. 2010). Hence, the presence of myxoxanthophyll, a dominant pigment in lacustrine Antarctic sediments, was used to diagnose the onset of lacustrine conditions. This is because diatom communities in brackish and saline lakes in Antarctica are highly similar to those occurring in the Southern Ocean. This complicates the delineation between marine and lacustrine sediments based on diatoms alone. The stratigraphic data were plotted using Tilia and Tilia Graph (Grimm 2004).
3.3. Radiocarbon dating

Lake sediment samples and marine macrofossils were dated using AMS 14C by the UK Natural Environment Research Council Radiocarbon Laboratory (NERC) or the Beta Analytic Radiocarbon Dating Laboratory (Table S1). Where possible, discrete macrofossils were dated (i.e. cyanobacterial mats, worm tubes, sponge spicules or shells). The results are reported as conventional radiocarbon years BP with one-sigma (1σ) standard deviation error. The raised beach data were calibrated using the Marine13.14C calibration curve in CALIB (Reimer et al. 2013; Table S1). The dates from the marine sections in the sediment cores were calibrated using the mixed terrestrial SHCal13.14C and the marine13.14C calibration curve, and those of the lacustrine sediments using the terrestrial SHCal13.14C calibration curve (Hogg et al. 2013). No reservoir correction was applied to dates from lacustrine sediments, because surface-sediment dates indicate that 14C in the modern lakes are in near-equilibrium with modern atmospheric CO$_2$ (Table S1), which is in agreement with results from other East Antarctic oases (e.g., Hodgson et al. 2001, Verleyen et al. 2011). In contrast, the AMS 14C dates of the marine sediments and marine fossils in the raised beaches were calibrated in CALIB 7.1 (Reimer et al. 2013) using a Delta R of 720 years, leading to a total correction of 1120 years as recommended for the region.
(Yoshida & Moriwaki 1979). An error of ± 100 years for the reservoir effect was calculated based on the Yoshida & Moriwaki (1979) dates. The

\(^{14}\)C dates of the sediments in the transition zone between the marine and lacustrine sediments in the isolation lakes were calibrated using the mixed Marine and SH Atmosphere calibration curve, with the percentage of marine carbon taken into account for calculating the Delta R. The percentage of marine carbon was set equal to the total relative abundance of marine diatoms following the procedures detailed in Sterken et al. (2012). The published \(^{14}\)C dates from isolation lakes (Tanako et al. 2012) and raised beach data (Miura et al. 1998) were recalibrated following the procedures described above. Because no diatom data were available for constraining the marine to lacustrine transitions in the cores of Tanako et al. (2012), the amount of marine carbon was set at 100% in the calibration procedure for those samples that were situated in the marine sediments and the transition zone from marine to lacustrine sediments. For developing the RSL curve, calibrated median ages were used and the upper and lower limit of the calibrated \(^{14}\)C dates defined the error bars.

3.4. Identifying RSL high stands and calculations of RSL fall
Minimum RSL high stands and their timing were defined based on the sill height of isolation lakes and 14C dates of their marine sediments, or on the height of marine raised beaches and the 14C ages of incorporated marine fossils. We treat these constraints as minimum marine limits because it is possible that marine sediments are present at higher altitudes, but not surveyed. The maximum RSL limits were identified based on 14C dates of lacustrine sediments in glacial (always above RSL) and isolation lakes (within the range of RSL changes) and their sill heights. The rate of RSL fall was calculated by dividing the difference of the sill heights of two isolation lakes situated above each other in the RSL curve by the difference between the dates since the lakes were isolated. The dates since isolation were determined from the calibrated 14C ages of the first lacustrine sample overlying the marine sediments in these basins. The rate of RSL fall between the lowest lake and the present-day sea level was calculated by dividing the sill height of this lake by its isolation date.

3.5. Glacial Isostatic Adjustment modelling

A GIA model was used to calculate predicted RSL curves for the four ice-free regions. Each of the four peninsula and island sub-areas are small enough (max 16 km across) that the variation in predicted RSL within them
would be smaller than the uncertainty in the observations. Therefore, a single RSL prediction is provided for each island and peninsula area, and the sea-level indicators for that location may be combined into a single RSL curve. In contrast, the distance between the outcrops across the whole study area is large enough for there to be a gradient in GIA. This, combined with the differing distances of the islands and peninsulas from former ice loading centres, justifies the need for a different RSL prediction for each outcrop. The GIA model calculates the solid Earth response to ice and ocean loading through time, and the corresponding change in the shape of the geoid (Kendall et al. 2005). The Earth is represented by a three-layer, spherically-symmetric, viscoelastic Maxwell body, while the ice loading history is defined by either the W12 (Whitehouse et al. 2012a) or the ICE-6G_C (Argus et al. 2014) model. The W12 model is combined with the northern hemisphere component of the ICE-5G model (Peltier 2004) such that both ice models define the global change in ice loading throughout the last glacial cycle. Ocean loading is determined by solving the sea-level equation (Farrell and Clark 1976). In combination with the W12 model we use the optimum Earth model of Whitehouse et al. (2012b), which comprises a 120 km-thick lithosphere, an upper mantle of viscosity 10^{21} Pa s, and a lower mantle of viscosity 10^{22} Pa s. In contrast, the ICE-6G_C ice loading history
should be combined with the VM5a Earth model (Peltier et al. 2015). The VM5a model does not take a uniform viscosity value in the lower mantle (Peltier et al. 2015), so we use an approximation of this model that has a 96 km-thick lithosphere, an upper mantle of viscosity 0.5×10^{21} Pa s, and a lower mantle of viscosity 3×10^{21} Pa s. From here onwards we use the terms W12 model and ICE-6G_C model to refer to the combination of the ice and Earth model in each case. RSL predictions are extracted from the models at the four study sites.

4. Results

4.1. Paleolimnological proxy analyses of the sediment cores

4.1.1. Isolation lakes

4.1.1.1. Yumi Ike (WO1), West Ongul Island - 10 m above sea-level (a.s.l.)

In the Yumi Ike core (Fig.2) a marine zone (WO1-I), a lacustrine freshwater zone (WO1-III), and a transition zone (WO1-II) in between could be identified based on the proxy data. Between 74 and 54 cm core depth, marine diatoms dominated and the total carbon (TC) concentration was relatively low. Mass-specific magnetic susceptibility (MS) values decreased towards the end of this zone whereas gamma ray density (GRD) remained relatively stable. The transition zone between 54 and 46 cm
contained a mixture of brackish-water and marine diatom species. The TC concentration remained low. MS values slightly increased, whereas GRD remained stable. From 46 cm until the surface sediments, freshwater diatoms were dominant and brackish and marine diatoms occasionally occurred. The TC concentration was more variable than in the other two zones. MS values further increased to reach a maximum at 37.2 cm, decreased until 14 cm, and rose again. GRD remained relatively stable to become slightly higher in the upper 5 cm of the sediments.

4.1.1.2. Ô–Ike (WO4), West Ongul Island - 13 m a.s.l.

Similar to Yumi Ike, three main zones were identified in the Ô–Ike sediment core (Fig. 3), namely a marine zone (WO4 I), a lacustrine freshwater zone (WO4 III) and a very short transition zone in between (WO4 II). In zone WO4 I, between 176 and 160 cm, TC concentrations were low, while GRD and MS were relatively high. The latter decreased towards the end of this zone. This zone was dominated by marine diatoms, while freshwater species were absent. Between 160 and 158 cm, TC concentrations were still low. This zone was dominated by marine and brackish water diatoms. GRD and MS decreased throughout this zone. Between 158 cm and the top of the core, the TC concentration was
relatively high. WO4 III was dominated by freshwater diatoms. GRD remained relatively stable and was lower in this zone compared with zone WO I and WOII until 86.6 cm, above which no measurements were available. MS was low and stable throughout this zone.

4.1.1.3. Mago Ike (SK1), Skarvsness - 1.5 m a.s.l.

Again, three main zones were identified in the core from Mago Ike (Fig.4), namely a marine zone (SK1 I), a lacustrine freshwater zone (SK1 III) and a transition zone in between (SK1 II). Between 254 and 143 cm, the TC concentration was very low. GRD and MS were relatively high and the latter increased towards the end of the zone. Marine diatoms dominated, while brackish-water and particularly freshwater species were only present in low abundances. Between 143 cm and 123 cm TC started to increase. GRD decreased in SK1 II while MS reached a maximum and subsequently dropped sharply. The relative abundance of brackish-water diatoms increased towards the upper part of this zone, while the percentage of marine diatoms decreased. Between 123 cm and the top of the core, TC concentration was relatively high, while GRD and MS were relatively low. This zone was dominated by freshwater diatoms; some brackish-water and marine diatoms occasionally occurred at the beginning of this zone.
4.1.1.4. Kobachi Ike (SK4), Skarvsness - 28 m a.s.l.

The evolution of Kobachi Ike is more complex and the delineation between the different zones in the core was less straightforward compared with the other isolation basins. This is due to the gradual change in the abundance of brackish water versus marine diatoms and the presence of the latter in the entire core, resulting in a slow species turnover in the fossil communities. Based on the diatoms, pigments and sedimentological changes, the sediment core could be subdivided in three main zones (Fig. 5), namely a zone consisting of glacial sediments (SK4 I), and a marine zone (SK4 II), which gradually evolved towards a lacustrine zone (SK4 III). Between 280 and 245 cm, the total chlorophyll and total carotenoid concentrations as well as the relative abundance of cyanobacterial carotenoids, MS and total diatom concentration were low. From 260 cm onwards, zone SK4 I was further characterized by relatively high TOC concentrations. Myxoxanthophyll, a cyanobacterial marker pigment was absent throughout this zone. Between 245 and 115 cm, the TOC concentrations, and the total chlorophyll and carotenoid concentrations were low. Myxoxanthophyll was almost completely absent in zone SK4 II. This zone was furthermore characterized by relatively high MS values. Marine diatoms were dominant, but brackish-water species became more abundant from c. 165 cm depth. It
follows that lake isolation may have started in this zone already. In zone SK4 III, between 115 cm and the top of the core, the TOC, chlorophyll and carotenoid concentrations were relatively high. Myxoxanthophyll became a subdominant pigment which marks the presence of cyanobacteria. From 93 cm depth, brackish diatoms generally dominate.

4.1.2. Glacial lakes

All the samples analysed in the cores from Ura Ike (17 m a.s.l.; WO5), Higashi Ike (18 m a.s.l.; WO6) and Nishi Ike (23 m a.s.l.; WO8) in the Ongul Islands were dominated by freshwater lacustrine diatoms. Hence, these lakes were considered to be of glacial origin. The basal ages of the Higashi Ike and Nishi Ike sediment cores are c. 4520 or 4560 and c. 11,240 cal. yr BP, respectively. In Ura Ike, age reversals occurred between 73 and 59 cm (Table S1), making it difficult to determine the age of the bottom sediments. However, the oldest 14C date obtained suggests that Ura Ike is at least c. 6,290 cal. yr BP old.

4.2. Initial ice sheet retreat

The start of biogenic sedimentation in the lacustrine sediments of glacial lakes and marine sedimentation in isolation basins provides minimum ages
of initial ice sheet retreat over the terrestrial and nearshore marine
environment respectively (cf. Hodgson et al. 2001 and Verleyen et al. 2004; Table S1). The latter were combined with 14C dates of marine fossils in raised beaches (Miura et al. 1998). In Skallen, Skarvsnes, and Langhovde no glacial lakes were cored. In the most southerly peninsula, Skallen, the oldest marine 14C date was derived from a fragment of a shell in a raised beach at 7 m a.s.l. and is 7,580 cal. yr BP, while the oldest date of marine sediments in the Skallen Ike basin (9.6 m a.s.l.) is 5,810 cal. yr BP (Miura et al. 1998; Fig.6a; Table S2). In Skarvsnes, polychaete tubes in a raised beach at 18 m a.s.l. are 8,670 cal. yr BP old (Fig. 6b) while the oldest date in a marine sediment core sequence comes from the isolation lake Kobachi Ike (28 m a.s.l.), and is 7,430 cal. yr BP old (Fig. 6b; Table S1). The oldest Holocene marine 14C date in Langhovde is 10,390 cal. yr BP and was derived from a shell of Adamussium colbecki situated in a raised beach at 6 m a.s.l. (Miura et al. 1998; Fig. 6c). The basal age of the freshwater sediment cores from Nishi Ike (23 m a.s.l.) in the Ongul Islands is almost 1000 years older (i.e., 11,240 cal. yr BP), which agrees well with the oldest post-LGM date of a marine fossil (shell fragment) in raised beaches at 17 m a.s.l. on these islands (10,810 cal. yr BP; Miura et al. 1998; Fig.6d).
4.3. Regional differences in relative sea-level changes

The analyses of fossil diatoms and the sedimentology in all cores, in combination with fossil pigments in Kobachi Ike, revealed that a total of 26 radiocarbon dates from the lake sediment cores were of marine or mixed marine-lacustrine origin, while 39 were deposited in a lacustrine environment (Fig.2-5; Table S1). Combined with the 14C dates of the raised beaches, these ages show that the RSL changes of Skallen, Langhovde and the Ongul Islands were broadly similar, but differed markedly with the one from Skarvsnes (Fig.6a-d). In Skallen, the minimum recorded sea-level high stand is 12 m at c. 4,020 cal. yr BP based on the raised beach data. RSL fall equalled no more than 3.7 mm/yr on average and was higher than 2.9 mm/yr during the past c. 2,600 cal. yr BP as revealed by the first 14C date in the lacustrine and the last deposited marine sediments respectively in Lake Skallen. In Langhovde, no lake records are available preventing the calculation of a robust rate of RSL fall. Based on the raised beach data alone, the minimum marine limit was estimated to be 17 m at 6,530 cal yr BP. In West Ongul Island, the maximum marine limit was below 17 m after 6,288 cal. yr BP as indicated by the absence of 14C dates with a marine origin in Ura Ike, and never exceeded 23 m during the past 11,240 cal. yr BP based on the presence of exclusively lacustrine sediments in the Nishi
The raised beach data revealed that the minimum marine limit on the islands is 17 m at 10,813 cal. yr BP (Fig.6d; Table S2). RSL fall equalled on average 2.5 mm/yr during the past c. 5,160 cal. yr BP and 2.3 mm/yr during the past c. 4,360 cal. yr BP based on the isolation of Yumi Ike. In Skarvsnes, the minimum RSL high stand is 32.7 m based on a new radiocarbon date of a marine macrofossil (shell) of 5,410 ± 40 14C yr old (5,265 – 4,653 cal. yr BP) preserved in a raised beach in the upper sill of Kobachi Ike (Table S1). The other macrofossils for which new 14C dates are available are from L. elliptica and polychaete tubes preserved in raised beaches in the valley which is occupied by L. Suribati to the north east of Kobachi Ike at a height of 8.6 m a.s.l. and they are respectively 4,730 ± 40 and 6,800 ± 40 14C yr old (Table S1). In Skarvsnes, RSL fall was more rapid during the past 2,410 cal. yr BP than in the Ongul Islands and Skallen, and equalled on average 11.6 mm/yr. The dominance of brackish diatoms at 93 cm and the presence of the cyanobacterial pigment myxoxanthophyll (from 115 cm onwards) in the Kobachi Ike sediment core are used to infer lacustrine conditions (Fig.5), and hence lake isolation in this calculation.

Between c. 2,410 (first lacustrine 14C date in Kobachi Ike (28 m a.s.l.)) and 780 cal. yr BP (first lacustrine 14C date in Mago Ike; 1.5 m.a.s.l.), the mean rate of RSL fall was 16.2 mm/yr, but this dropped to a rate of 1.9 mm/yr
from c. 780 cal. yr BP onwards, which is of the same order as that recorded in the other two regions. The inference of the start of freshwater conditions during the Late Holocene in Kobachi Ike also shows that RSL did not fall below 28 m a.s.l. until 2,410 cal. yr BP (Fig.6b).

4.4. Ice sheet model outputs and comparison with geological constraints

The maximum RSL high stand in the output of the W12 model is consistently lower and occurs slightly later compared with the ICE-6G_C model, although the difference between the two models decreases with distance from the Shirase Glacier (Fig.6a-d). Along the south to north gradient away from the Shirase Glacier (i.e., between Skallen and the Ongul Islands), the maximum RSL high stand varied between c. 29 and 20.3 m and between c. 14.3 and 12.4 m in the output of the ICE-6G_C and W12 models, respectively. The output of the W12 model provides a reasonable fit to the highest radiocarbon date of a marine raised beach sample in Skallen, although this was not necessarily the marine limit. This model also agreed well with the geological constraints on the RSL high stand in the Ongul Islands, but underestimates the RSL high stand in Langhovde and particularly in Skarvsnes. The rate of RSL fall during the Late Holocene is underestimated by this model in all four regions and
particularly in Skarsvnes. With the exception of the Ongul Islands, this is also more or less the case with the output from the ICE-6G_C model which underestimates RSL fall in the three other regions. The high stand is predicted by the ICE-6G_C model to lie above the elevation of the highest marine fossils in Skallen and Langhovde, although these fossils were not necessarily sampled at the maximum marine limit. The ICE-6G_C model provides a good fit to the raised beach and lake data in the Ongul Islands and gets closer to matching the highest marine fossils at Skarsvnes. However, in the latter region the timing of the modelled RSL high stand is too early compared with the geological constraints from Kobachi Ike.

5. Discussion

5.1. Interpretation of the proxy results in the lake sediment cores

Delineating between marine and lacustrine sediments in three out of the four isolation basins was relatively straightforward based on the presence of diatom indicator taxa (Fig.2, 3, 4). The occasional occurrence of marine diatoms in the lacustrine zones of the cores from for example Yumi Ike is likely the result of sea spray or the visit of the lake by marine birds or mammals as was observed during sampling in Langhovde. However, in Kobachi Ike, marine diatoms were present in all zones of the sediment
cores and the abundance of brackish diatoms gradually increased until 20 cm after which they declined again (Fig.5). This gradual change in diatom community structure is likely related to the volume and shape of the basin in relation to the amount of meltwater entering the lake. In the other study lakes, the meltwater input is high compared with the volume of the basin, leading to flushing of the trapped marine water after lake isolation, which in turn resulted in the establishment of freshwater conditions and the colonization by freshwater organisms (including diatoms). By contrast, in Kobachi Ike, the relatively low amount of meltwater entering the lake only slowly diluted the marine water. Moreover, due to the relatively deep water column, the lake is chemically stratified as brackish conditions prevail in the bottom waters (specific conductance below 2.4 m depth equaled 11.4 mS/cm at the time of sampling), while low salinity waters (specific conductance of 5.0 mS/cm) were present in the upper 2.4 m of the water column. This freshwater lens at the surface is likely derived from meltwater input from the catchment and/or lake ice (Kimura et al. 2010). The salinity-driven stratified conditions appear to be strong enough to prevent mixing of the bottom water with this meltwater. Furthermore, this situation also provides a mechanism for the passage of large fluxes of meltwater without significantly affecting the salinity of the lake as freshwater can pass through
the epilimnion and leave the lake via an outflow stream (which was not active during sampling) without diluting the brackish water stored in the hypolimnion. Hence, instead of the relatively rapid dilution of the lake water in the smaller polymictic freshwater lakes and the subsequent changes in the diatom communities, marine species could probably survive in saline conditions in Kobachi Ike for hundreds of years. This was for example also the case in the saline lakes of the Vestfold Hills (Roberts and McMinn 1999), which are still dominated by marine taxa (Verleyen et al. 2003). In turn, this complicates the delineation of the core into marine and lacustrine zones. In Kobachi Ike, we therefore combined fossil diatoms with fossil pigments and changes in the sediment properties to pinpoint the isolation event. At 115 cm depth, myxoxanthophyll becomes a subdominant pigment. Myxoxanthophyll is present in benthic cyanobacteria, which dominate the primary production in microbial mats in the benthos of East Antarctic lakes (Verleyen et al. 2010), as well as Kobachi Ike today (Obbels et al. unpubl. results). However, cyanobacteria are largely absent from the Southern Ocean (Fukuda et al. 1998). We therefore considered the zone between 115 cm and 93 cm as a transition zone, in which benthic cyanobacteria occurred but marine diatoms remained dominant. Hence, the 14C dates at 115 and 107 cm were calibrated using the mixed marine and
SH curve (Table S1). From 93 cm depth brackish diatoms generally dominate. We interpret this as the start of the establishment of fully lacustrine conditions. However, spores from marine *Chaetoceros* species remained an important member of the assemblages and even dominated in some samples in the upper 20 cm. These spores can be *in situ* produced, although it is also possible that they were transported to the lake through sea spray, or alternatively that they were washed-in from raised beach deposits within the catchment area. The start of the dominance of the brackish water diatoms also coincided with a decrease in magnetic susceptibility (MS) that further gradually declined from 82 cm. This decrease in MS also suggests a complete isolation of the lake, which was for example similarly observed in Maritime Antarctic lakes and related to differences in the sedimentary infill of the basins during marine versus lacustrine conditions (Watcham et al. 2011). During the latter, mainly local minerals are transported to the basin while during marine conditions sediments from elsewhere might be transported to the site via ice bergs and redistributed sea ice containing wind-blown particles. Hence, we considered the start of the dominance by brackish water diatoms at 93 cm depth as marking the establishment of full lacustrine conditions.
The absence of marine sediments in the cores from Ura Ike (17 m a.s.l.; WO5), Higashi Ike (18 m a.s.l.; WO6) and Nishi Ike (23 m a.s.l.; WO8) in the Ongul Islands suggests that these basins were situated above the marine limit throughout the entire Holocene and probably originated from beneath the ice-sheet or permanent snow fields during the Early- to Mid-Holocene.

5.2. Initial ice sheet retreat

The finding that all dates obtained form the lake sediment cores are of Holocene age suggests that the regions were ice-covered during the LGM as a result of the expansion of the EAIS, and that they became gradually ice-free during the Early Holocene. This scenario is in general agreement with reconstructions in a large number of the currently ice-free regions in East Antarctica, such as Schirmacher Oasis, the Vestfold Hills (but see Gibson et al. 2009), and the Windmill Islands (see Hall 2009 and Mackintosh et al. 2014 for a review).

The 14C dates in the bottom sediments of the lakes also suggest that deglaciation started later near the Shirase Glacier (in Skallen and Skarvsnes) than in the regions further to the north (Langhovde and the Ongul Islands). More in particular, the oldest 14C date in Skallen was 7,580
cal yr BP and the oldest date (c. 11,240 cal. yr BP, see Table S1) was obtained in lacustrine sediments overlying glacial sediments in a core from Nishi Ike, a glacial lake in West Ongul Island. This confirms the prediction that regions closer to the main glacier deglaciated more recently than those further to the north. We are however aware that the ages are only minimum ages for deglaciation, and that deglaciation potentially started more or less coincident in the different ice-free regions. However, our lake based estimates of the minimum age of deglaciation in Skarvsnes confirm existing reconstructions of the deglaciation history based on raised beach data (Miura et al. 1998), as well as cosmogenic isotope dates (Yamane et al. 2011). More in particular, deglaciation in Skarvsnes seems to have started somewhere around c. 7430 cal. yr BP, as evidenced by the oldest radiocarbon date obtained from the marine sediments in Kobachi Ike. This timing is in agreement with that obtained from the radiocarbon dates in the raised beaches (Miura et al. 1998, Fig.6b; Table S2), where apart from two dates, none is older than c. 8000 cal. yr BP. Moreover, our estimate also corresponds to a cosmogenic isotope dating study which places the deglaciation of Skarvsnes between 10 and 6 ka BP (Yamane et al. 2011). More precisely, the time of deglaciation of the Kobachi Ike basin agrees well with that obtained for nearby Mount Suribati. A relatively late
deglaciation in Skarvsnes and Skallen furthermore corroborates recent evidence from regions along the Rayner Glacier (Enderby Land) to the east of Lützow-Holm Bay that became ice-free between 9 and 6 ka (White & Fink 2014).

However, the scenario of an early Holocene deglaciation in the Ongul Islands contradicts an alternative interpretation which was based on existing raised beach data (Takada et al. 2003). More in particular, because well-preserved in situ fossils of L. elliptica in raised beaches from the Ongul Islands and parts of Langhovde predate the LGM (Miura et al. 1998), Takada et al. (2003) suggested that the nearshore zone of those regions were ice-free during MIS3 and maybe even during earlier marine isotope stages. One hypothesis to explain the discrepancy between the presence of in situ fossils of Late Pleistocene age and the lack of lake sediments predating the Holocene is that terrestrial habitats were covered with permanent snow banks during the LGM. This snow cover would have prevented light penetration and hence primary production in the lakes during the LGM (cf. Gore 1997). In turn, this blanketing by snow would have resulted in the absence of organic carbon in terrestrial habitats and hence the lack of material for 14C dating. In this scenario, the Ongul Islands and parts of Langhovde escaped glacial overriding during the LGM, and the
expanding glacier was thus diverted around the regions, possibly through the 600 m deep Fuji Submarine Valley. By contrast, the regions closer to the Shirase Glacier only became ice-free during the Holocene (Mackintosh et al. 2014). These regional differences in deglaciation in Lützow-Holm Bay are furthermore supported by geomorphological evidence and the degree of weathering of the bedrock. Indeed, rocks in the northernmost part of Sôya Coast are deeply weathered, whereas those in the southern part of the coast (i.e. Skarvsnes and Skallen) are relatively unweathered and intensively striated. However, regional differences in the degree of weathering not necessarily require ice-free conditions during the LGM in the Ongul Islands. Instead, these differences can be equally explained by the presence of a cold-based and slow moving ice sheet which was buttressed on the Ongul Islands, while the major ice flow lines diverted into the deep glacial troughs between the islands and the continent. The ice sheet could instead have been more active in the areas closer to the current glacier front leading to intensively striated bedrock. Besides, this could also explain the presence of in situ marine fossils of Pleistocene age in the Ongul Islands and parts of Langhovde (Miura et al. 1998). A similar process was proposed by Hodgson et al. (2006b) to invoke the presence of well-preserved Eemian sediments in Progress Lake in the Larsemann Hills,
which became ice-free during the Late-Holocene. It is however clear that additional 14C dates of lake sediment cores in combination with cosmogenic isotope dates of landforms are needed to assess whether the Ongul Islands and parts of Langhovde were indeed ice-free during the LGM or rather covered by an inactive ice sheet.

5.3. Geological constraints on changes in relative sea-level

Our most significant finding is the striking difference in the RSL high stands and rates of RSL fall between Skallen, Langhovde and the Ongul islands on the one hand, and Skarvsnes on the other (Fig.6a-d). In Skallen, the raised beach data suggest that the RSL high stand was situated at least at 12 m. It is possible that the limit was actually higher, but this needs to be confirmed by additional dating of bottom sediments of glacial lakes (i.e. those that have remained above the Holocene marine limit) and additional surveying of raised beaches in the region at higher altitudes. In the Ongul Islands, RSL was always below 23 m a.s.l. during the Holocene as indicated by the presence of exclusively lacustrine sediments in the glacial lake Nishi Ike between c. 11,240 cal. yr BP until present. The absence of raised beaches 6 m below the sill height of this lake and the absence of marine sediments in the two other glacial lakes (Ura Ike at 17 m a.s.l. and
Higashi Ike at 18 m a.s.l.) suggests that the marine limit in the Ongul Islands is probably even lower (i.e., at 17 m a.s.l.). It is however not completely sure whether RSL was below 17 m.a.s.l. during the early Holocene, because the oldest ages obtained in Ura Ike and Higashi Ike were respectively only 6288 cal yr BP and 4596 cal yr BP (Table S1). In Langhovde, the raised beach data suggest that the marine limit is similarly at 17 m a.s.l. Taken together, these marine limits are close to previous estimates based on raised beach data alone (Miura et al. 1998). By contrast, the minimum marine limit in Skarvsnes is at least 9 m higher than the maximum marine limit in the Ongul Islands, and 12 m higher than previous estimates for the peninsula based on raised beach data alone (Miura et al. 1998). The rate of RSL fall is also different between Skarvsnes and the other three regions. In Skarvsnes, RSL fall was on average 11.6 mm/yr during the past 2,400 years. This far exceeds the rates in Skallen and the Ongul Islands, which equalled 3.6-2.9 mm/yr during the past c. 2,600 cal yr BP and 2.5 mm/yr during the past c. 5,160 cal yr BP, respectively. The shape of the RSL curve is also highly different compared with those in other regions along the East Antarctic coastline (e.g. Zwartz et al. 1998, Verleyen et al. 2005). This difference is mainly related to the rapid RSL fall between 2,400 cal yr BP (isolation of Kobachi Ike) and 780 cal. yr BP.
(isolation of Mago Ike) in Skarvsnes. These contrasts in the RSL curves in the different regions are potentially underlain by three different, non-mutually exclusive processes, namely regional variation in (i) the timing of deglaciation, (ii) local ice-sheet volume, and (iii) neotectonic processes. The first process is less likely, given the relatively small regional differences in the timing of the start of deglaciation between Skallen and Skarvsnes. Also, the second process can be expected to be negligible, because RSL changes typically reflect regional changes in ice thickness rather than local small-scale differences. GIA could only produce such a spatial contrast in RSL rate if the upper mantle were locally very weak (e.g. Simms et al. 2012) and there had been a short-lived, localised period of significant ice loss in Skarvsnes. There is no evidence for either condition being upheld. We therefore speculate that the third hypothesis, namely that neotectonic processes are involved, is the most likely, given (i) the small distance between the different sites, (ii) the marked difference in the shape of the RSL curve in Skarvsnes with that in the other regions in Lützow-Holm Bay and elsewhere in Antarctica (e.g., Hodgson et al. 2016), (iii) the presence of a mapped fault system on Skarvsnes and other faults in the bay (Ishikawa et al. 1976; Fig.1), and (iv) the well-known tendency for post-glacial crustal stress to result in fault rupture in some locations (Bentley &
A reactivation of this fault system in response to glacial unloading could explain the sudden difference in RSL fall in Skarvsnes between c. 2400 and 780 cal. yr BP (rate of 16.2 mm/yr) compared with a rate of 1.9 mm/yr from c. 780 cal. yr BP onwards. Short-term tectonic activities along existing fault lines was also hypothesised to explain regional patterns in RSL fall along the Baltic coast of Sweden (Risberg et al. 2005). Similarly, in the Strait of Magellan (South Chile) there is evidence for post-glacial fault movement of at least 30 m, based on the proxy record from a bog near Puerto del Hambre and the regional history of proglacial lakes (Bentley & McCulloch 2005). On account of the differences in RSL changes between the islands and peninsulas in Lützow-Holm Bay we consider that the three similar records (Skallen, Langhovde, Ongul) can be used to constrain GIA models, but that Skarvsnes should be considered an outlier. This could be confirmed by further geological and geomorphological data from either side of the fault lines.

5.4. Comparison between geological constraints and monitoring and modelling results

The rate of RSL fall in Skallen and the Ongul Islands, which equalled 3.6 mm/yr on average during the past c. 2,600 cal. yr BP and 2.5 mm/yr on
average during the past c. 5,160 cal. yr BP respectively, is comparable with data obtained from short-term GPS measurements of local crustal deformation between 1999-2003 in Skallen (3.00 +/- 1.9 mm/yr; 69.6710 S, 39.3987 E) and between 1998 and 2004 (2.56 +/- 0.24 mm/yr; Ohzono et al. 2006) in West Ongul Island (69.0070 S, 39.5833 E). In Skarvsnes the rate of RSL fall is 1.9 mm/yr from c. 780 cal. yr BP onwards, which is in relatively good agreement with the uplift rate measured using GPS monitoring stations in the region (1.12 +/- 1.46 mm/yr, 69.4738 S, 39.6071 E; Ohzono et al. 2006). This confirms the robustness of our approach. However, ignoring the anomalous curve before c. 780 cal yr BP at Skarvsnes, the shape and high stand of the RSL curves based on the geological data are not always in agreement with GIA modelling results. For example, the ICE-6G_C model provides a reasonable fit to the recent rate of RSL fall at Skallen but this rate is under-predicted by the W12 model. Both models under-predict the recent rate of RSL fall at Langhovde, but fit the data reasonably well in the Ongul Islands. The greater magnitude of the high stand predicted by the ICE-6G_C model at all four locations is due to a combination of two factors: (i) The ICE-6G_C model includes a greater magnitude of regional ice loss since the LGM compared with the W12 model, and (ii) it uses a weaker value for the upper and lower mantle
viscosity. The lack of robust, independent constraints on either of these factors makes this an underdetermined problem. Regional RSL data therefore play a vital role in reducing the uncertainty on ice history and Earth rheology around Antarctica.

6. Conclusions

The minimum age for deglaciation of the Lützow Holm Bay region is c. 11,240 cal. yr BP on West Ongul Island with progressively younger deglaciation ages approaching the main regional ice outflow at Shirase Glacier. Based on our geological evidence, it remains unclear whether parts of the region were ice-free during the LGM, or alternatively covered by permanent snow banks or an inactive ice sheet. Of most significance is the difference in (i) the Holocene RSL high stand and (ii) the shape of the RSL curves in Skarvsnes compared with those in the Ongul Islands, Langhovde and Skallen. We attribute these regional differences to neotectonic events. Current GIA model predictions give a reasonable fit to the reconstructed RSL curves at Skallen, Langhovde, and West Ongul, but they are unable to explain the pattern of RSL recorded at Skarvsnes.

7. Acknowledgements
This work was supported by the Belgian Science Policy Office (HOLANT project), the UK Natural Environment Research Council (British Antarctic Survey and Radiocarbon Laboratory), and the Japanese Antarctic Research Expedition 48. EV was a post-doctoral research fellow with the Fund for Scientific Research Flanders during part of the research. IT was funded by the Institute for the Promotion of Innovation by Science and Technology in Flanders. PLW is a recipient of a NERC Independent Research Fellowship (NE/K009958/1). Maaike Vancauwenberghe is thanked for the logistical support. Ilse Daveloose (Ghent University) is thanked for the help with the HPLC analysis of the fossil pigments. Laura Gerrish (BAS, UK) is thanked for providing figure 1 and Dr. Yuichi Aoyama for sharing the data regarding the seasonal variations in sea level height near Syowa Station. An anonymous reviewer is thanked for improving a previous version of the manuscript.

References

Aoki, S., Ozawa, T., Doi, K., Shibuya, K. (2000) GPS observation of the

Reviews, 100, 1-9.

Clark, P.U., Tarasov, L. (2014) Closing the sea level budget at the Last Glacial Maximum. Proceedings of the National Academy of Sciences of the
United States of America, 111, 15861-15862.

Hodgson, D.A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P.R.,
influencing the pigment composition of in situ benthic microbial
communities in east Antarctic lakes. Aquatic Microbial Ecology, 37, 247-
263.

Hodgson, D.A., Verleyen, E., Sabbe, K., Squier, A.H., Keely, B.J., Leng,
M.J., Saunders, K.M., Vyverman, W. (2005) Late Quaternary climate-
driven environmental change in the Larsemann Hills, East Antarctica,
multi-proxy evidence from a lake sediment core. Quaternary Research, 64,
83–99.

Hodgson, D.A., Roberts, D., McMinn, A., Verleyen, E., Terry, B., Corbett,
C., Vyverman, W. (2006a) Recent rapid salinity rise in three east Antarctic

Hodgson, D.A., Verleyen, E., Squier, A.H., Sabbe, K., Keely, B.J.,
Saunders, K.M., Vyverman, W. (2006b) Interglacial environments of
coastal east Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (Last
Interglacial) lake-sediment records. Quaternary Science Reviews, 25, 179-
197.

Rapid early Holocene sea-level rise in Prydz Bay, East Antarctica. Global
and Planetary Change, 139, 128-140.

Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson,
T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S.M.,
Zimmerman, S.R.H. (2013) SHCAL13 Southern Hemisphere calibration, 0-
50,000 years CAL BP. Radiocarbon, 55, 1889-1903.

Huybrechts, P. (2002) Sea-level changes at the LGM from ice-dynamic
reconstructions of the Greenland and Antarctic ice sheets during the glacial
cycles. Quaternary Science Reviews, 21, 203-231.

Ishikawa, T., Tatsumi, K., Kizaki, K., Yanai, H., Ando, T., Kikuchi, Y.,
Yoshida, Y. (1976) Explanatory text of geological map of Langhovde,
Antarctica. Antarctic Geological Map Seriers Sheet 5, Langhovde, National
Institute of Polar Research, 12.

Jeffrey, S.W., Mantoura, R.F.C., Bjornland, T. (1997) Data for the
identification of 47 key phytoplankton pigments. In: Jeffrey, S.W.,
Mantoura, R.F.C., Wright, S.W. Phytoplankton pigments in oceanography,

<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1009</td>
<td>Nakada, M., Kimura, R., Okuno, J., Moriwaki, K., Miura, H., Maemoku, H. (2000) Late Pleistocene and</td>
</tr>
<tr>
<td></td>
<td>Holocene melting history of the Antarctic ice-sheet derived from sea-level variations. Marine Geology,</td>
</tr>
<tr>
<td></td>
<td>167, 85-103.</td>
</tr>
<tr>
<td>1010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>freshwater lakes of Skarvsnes ice-free area, East Antarctica. Polar Biosciences, 20, 113-130.</td>
</tr>
<tr>
<td>1012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syowa Station based on GPS measurements. Earth Planets Space, 58, 795-804.</td>
</tr>
<tr>
<td>1014</td>
<td></td>
</tr>
<tr>
<td>1016</td>
<td></td>
</tr>
<tr>
<td>1018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75, 417-429.</td>
</tr>
<tr>
<td>1020</td>
<td></td>
</tr>
</tbody>
</table>

Geological constraints on glacio-isostatic adjustment models of relative sea-level change during deglaciation of Prince Gustav Channel, Antarctic Peninsula. Quaternary Science Reviews, 30, 3603-3617.

Scheuchl, B., Schrama, E.J.O., Smith, B., Sundal, A.V., van Angelen, J.H.,
van de Berg, W.J., van den Broeke, M.R., Vaughan, D.G., Velicogna, I.,

Takano, Y., Tyler, J.J., Kojima, H., Yokoyama, Y., Tanabe, Y., Sato, T.,

http://dx.doi.org/10.1016/j.apgeochem.2012.08.009

Tavernier, I., Verleyen, E., Hodgson, D.A., Heirman, K., Roberts, S.J.,

Thomas, I.D., King, M.A., Bentley, M.J., Whitehouse, P.L., Penna, N.T.,

Figure captions

Fig. 1: Overview map of Antarctica with an indication of the study area and the ICESat7 drainage system of the East Antarctic Ice Sheet (Zwally et al. 2012), and a map of Lützow Holm Bay with an indication of the study sites: the Ongul Islands, Langhovde, Skarvsnes and Skallen. The inset shows the location of the lakes used for developing the RSL curves in Fig.6: Yumi Ike (WO1, 10 m a.s.l.), Ô-Ike (WO4, 13 m a.s.l.), Ura Ike (WO5, 17 m a.s.l.), Higashi Ike (WO6, 18 m a.s.l.), Nishi Ike (WO8, 23 m a.s.l.), Mago Ike (SK1, 1.5 m a.s.l.) and Kobachi Ike (SK4, 28 m a.s.l.). The lake codes refer to Tavernier et al. (2014) and Verleyen et al. (2012). The data for Lake Oyako (2.4 m a.s.l.) and Lake Skallen (9.6 m a.s.l.) are based on Takano et al. (2012).

Fig.2: Summary diagram of the Yumi Ike (WO1 – 10 m a.s.l.) sediment core showing the lithology, total carbon content (TC), mass specific magnetic susceptibility (MS), gamma ray density (GRD), and the percentage of lacustrine freshwater, brackish and marine diatoms. The dates are median calibrated ^{14}C ages. Dates in blue were calibrated using the mixed SH marine-terrestrial calibration curve and those in black using the SH Cal13 terrestrial calibration curve.
Fig.3: Summary diagram of the Ô Ike (WO4 – 13 m a.s.l.) sediment core showing the lithology and legend, total carbon content (TC), mass specific magnetic susceptibility (MS), gamma ray density (GRD), and the percentage of lacustrine freshwater, brackish and marine diatoms. GRD and MS were only measured on cores transported intact to the laboratory (between c. 176 and 86 cm depth). The color code for the dates is as in fig.2.

Fig.4: Summary diagram of the Mago Ike (SK1 – 1.5 m a.s.l.) sediment core showing the lithology and legend, total carbon content (TC), gamma ray density (GRD), mass specific magnetic susceptibility (MS), and the percentage of lacustrine freshwater, brackish and marine diatoms. The color code for the dates is as in fig.2. For depths for which two dates are available, the date of the bulk material is on the right and the date of macrofossils on the left. The dates on the marine macrofossils were consistently younger.

Fig.5: Summary diagram of the Kobachi Ike (SK4 – 28 m a.s.l.) sediment core showing the lithology and legend, total carbon content (TC), the total
chlorophyll and carotenoid concentration, the relative abundance of cyanobacteria marker pigments, and the percentage of myxoxanthophyll (%); a pigment exclusively produced by cyanobacteria. Also shown are the gamma ray density (GRD), mass specific magnetic susceptibility (MS), and the percentage of lacustrine freshwater, brackish and marine diatoms. The grey horizontal bar represents a zone of low diatom production. The green line represents the interpreted start of full lacustrine conditions based on the dominance of brackish water diatoms. The color code for the dates is as in fig.2.

Fig.6: Relative sea level curves for (a) Skallen, (b) Skarvsnes, (c) Langhovde and (d) the Ongul Islands; the order of the regions is in increasing distance from the Shirase Glacier. The plots show the height above present sea level (a.s.l.; grey stippled horizontal line) of the median calibrated 14C dates of the marine fossils in the raised beaches (blue circles) extracted from Miura et al. (1998), the marine sediments in the isolation lakes (blue squares), and the lacustrine sediments in the glacial and isolation lakes (red squares), including the data extracted from Takano et al. (2012). The dark blue circles in fig.2b denote the new raised beach data. The red symbols represent the maximum upper limit of the RSL curve,
while the blue symbols are the minimum upper limit. The vertical error bar was set at 3 m corresponding to the maximum tidal range in the region (Aoyama et al. 2016) that exceeds the error of the measurements of the heights of the deposits. The horizontal error bars correspond to the minimum and maximum ranges of the calibrated 14C dates. The green line is the output of the W12 model (Whitehouse et al. 2012a), and the black line is the output from our approximation of the ICE-6G_C model (Argus et al. 2014). The full blue line is a hand-drawn approximation of the minimum RSL based on the available 14C dates of marine sediments in isolation basins or marine raised beaches.