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BLOCKMODELS WITH MAXIMUM CONCENTRATION 

 

 

To be published in the European Journal of Operations 

Research 

 

 

 

 

Abstract 

 

There are many circumstances in which binary relations are 

defined between pairs of objects: in sociology there are social 

relations between people; in business there are trading relations 

between firms; in design there are functional dependencies 

between components. In all of these the clustering of objects 

into densely interconnected blocks reveals something of the 

structure of the system. In this paper a criterion is presented 

which permits the construction of blocks to be formulated as a 

quadratic programme. The method is applied to two illustrative 

cases: the pattern of elective choices by MBA students and the 

performance assessment of British universities. The method is 

shown to give results which are readily interpreted and, for the 

purpose of performance ranking, leads to a more realistic 

description of achievement. 
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BLOCKMODELS WITH MAXIMUM CONCENTRATION 

 

 

 

1. Introduction 

 

A blockmodel is a description of the structural relations between 

a number of objects. For example, the objects may be people 

and the relations “like” or “talk to”. The problem of describing 

the relations may be seen as part of structural modelling 

(Harary, Norman and Cartwright, 1965; Lendaris, 1980; Hage 

and Harary, 1983) or social network analysis (Wasserman and 

Faust, 1997; Scott, 2000). The purpose of the model is to define 

groups of objects that exhibit a high degree of 

interconnectedness, and in this sense is a form of cluster 

analysis. Two model forms may be distinguished: that in which 

an object may belong to only one of a number of disjoint groups, 

and that in which there is no such restriction and so the groups 

may overlap. Although nomenclature varies a little groups of the 

first type are generally called blocks and those of the second 

type are called cliques. Although what follows is concerned with 

blockmodels it may be noted that cliques have for some time 

been of interest in sociometry (Luce, 1950; Harary and Ross, 

1957; Arabie, 1977) and in the analysis of design problems 

(Alexander, 1964; Chermayeff and Alexander, 1966; Elms, 

1983) in which application a relation exists if the solution 

chosen for one object influences the choice of solution for 

another. The sociometric concept of a clique requires, quite 

naturally, that an individual will in general be a member of a 

number of cliques and that position and power are in part a 

result of this multiple membership. Again, in the dissagregation 

of a design problem into smaller, and so more easily resolved, 

sub-problems it is thought reasonable that an object – a door, say 

– will form part of more than one sub-problem and that this 
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should be recognised in the disaggregation. Whether this overlap 

has much practical use remains an open question. Clique 

detection methods rely heavily on network theoretic results, as 

do structural modelling methods in general. 

 

 

2. Blockmodels 

 

Relations between objects are encoded as either present or not. 

This may be inherent in the nature of the relation, “father of”, 

for instance, or it may be arrived at by applying a cutoff level to 

a continuous measure such as a correlation coefficient. The 

relations need not be symmetric. A block may be visualised as a 

group of nodes in a network which are highly interconnected or, 

equivalently, as a high density region of the incidence matrix 

obtained by rearrangement of the rows and columns. Most of the 

blockmodel methods refer primarily to the matrix idea though 

some are based on network models (e.g. Everett, 1982). The 

rationale of the blockmodel relies on the idea of structural 

equivalence. Two objects are structurally equivalent if they have 

the same pattern of interaction with all objects in the set. Ideally 

all such equivalent objects are grouped into a block and in doing 

so no information is lost. In practice this ideal is unachievable 

and so some acceptably good approximate blocking must be 

achieved. 

 

The blockmodel approach was introduced by White, Boorman 

and Breiger (1976). Overviews are given by Arabie, Boorman 

and Levitt (1978), Light and Mullins (1979) and in Wasserman 

and Faust (1997) and Scott (2000). These authors also provide 

numerous examples of application, primarily sociological in 

nature. In general, there may be more than one relation to be 

considered (“likes” and “helps”, say) and there are two ways of 

constructing a model in this situation. First, each relation may be 
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modelled separately and the results compared to identify if two 

or more patterns of interrelation are practically the same 

(multiplexity). Second, the criterion underlying the blockmodel 

may be extended to calculate just one partition for all relations 

(e.g. as by Boorman and Levitt, 1983). The method described in 

this paper will be for a single relation but the application to 

either of these cases will be obvious. 

 

To state the problem formally, consider a binary network X of n 

nodes in which xij = 1 if the relation being studied exists 

between the objects represented as nodes i and j and 0 if it does 

not. It is not usual that diagonal elements have any meaningful 

interpretation and so, solely for convenience in what follows, let 

xii  = 1. 

 

Nodes are partitioned into m sets or blocks (m  n) via the 

membership matrix  in which ik = 1 if node i is in block k and 

0 if it is not. Each node must belong to just one block and so 

 

  ik  =  1    ;     i     (1) 

  
k 

 

The number of nodes in block k is 

 

 sk  =   ik       (2) 

           
i 

 

The density matrix, D, describes interactions between the m 

blocks as the proportion of possible inter-block links realised in 

the network. Typically , for blocks k and l, the maximum 

number of inter-block connections is sksl and so the inter-block 

density is  

 

 dkl  =   xij ik jl  / sksl     (3) 

            
i
  

j 
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A special case is the intra-block density, or just block density,  

 

 dkk  =   xij ik jk  / sk
2
    (4) 

            
i
  

j 

From the density matrix, D, may be derived a binary matrix 

called an image matrix, Y, via a cutoff value : 

 

 ykl  = 1 if dkl   

      = 0 otherwise     (5) 

 

If =0 the result is a “zeroblock” or lean fit image, since only 

for zero densities will the density and image be the same. 

Similarly, if =1 the result is a “oneblock” or fat fit. Other 

values are called -fit images. A convenient value for  is the 

density of the whole matrix X so that the image matrix shows 

those inter-block densities above and below the mean. This last 

stage is not always required, as will be the case in the 

illustrations below. 

 

Construction of a blockmodel requires the determination of the 

partition . 

 

Measured by the number of published applications the two most 

popular methods of blockmodel construction are BLOCKER and, 

particularly, CONCOR described by Light and Mullins (1979) as 

being respectively deductive and inductive. BLOCKER (Heil and 

White, 1976) requires that an hypothesised structure (image) is 

provided as input and then seeks permutations of the network to 

give best fit solutions. The hypothesis is justified a priori by 

reference to some body of theory outwith BLOCKER. However, it 

is not often that such a hypothesis is available, rather it is 

required that some structure inherent in the data is revealed by 

the analysis. CONCOR (Breiger, Boorman and Arabie, 1975) does 

just this by a process of repeated correlation. The calculations 
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are observed to lead to a useable result in that blocks are 

produced but by a process with no theoretical justification. 

Schwartz (1977) criticised the method as being obscure and a 

poor substitute for a principle component analysis. Despite these 

reservations CONCOR continues to be used, for example by 

Gerlach (1992) in his study of corporate relations in Japan. 

 

An alternative, and in principle a more straightforward, strategy 

is to find some criterion for model performance and then a 

blockmodel which is optimal. Such criteria may be of two types: 

those which measure the goodness of fit of model to data and 

those which describe some characteristic of the blockmodel 

structure. 

 

Alternative measures of goodness of fit are described by, among 

others, Arabie, Boorman and Levitt (1978), Carrington and Heil 

(1979) and Wasserman and Faust (1997: Ch. 16) as ways of 

describing the adequacy of the description provided by the 

model of the data after the blocks have been constructed. As a 

criterion for block construction the COBLOC algorithm proposed 

by Carrington and Heil (1981) uses a chi-squared measure to 

compare the density and image matrices, D and Y, as the basis 

for a hierarchical clustering procedure giving partitions of 

varying coarseness wherein the clusters are determined by the 

measure. Panning (1982) takes the values of the image matrix as 

predictors of the interactions in the data matrix, X, and uses the 

correlation between elements in these two n  n matrices as a 

measure of goodness of fit to be optimised, and shows that in 

this case blockmodelling is equivalent to regression. 

 

While choosing a model to maximise goodness of fit is a 

common enough approach to model building generally, it will 

always be more satisfactory if the model is derived from some 
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other considerations and the goodness of fit calculated only after 

the model is formed. 

 

In one sense an ideal of a block structure is a rearrangement of 

matrix rows and columns to create a high density diagonal band. 

Katz (1947) takes this idea and uses the distance (number of 

cells) that an interaction lies above or below the diagonal. The 

sum of squares of these distances, xij(i-j)
2
, provides a function 

to be minimised in constructing the partition. Beum and 

Brundage (1950) give an alternative algorithm for the same 

objective. 

 

The goal of Boorman and Levitt (1983) is to determine that 

partition which separates as effectively as possible high density 

from low density regions. To this end they maximise the 

weighted sum of squares of block densities from the mean 

density, or densities if more than one relation is being modelled 

simultaneously. 

 

 

3. Concentration 

 

Just as Boorman and Levitt had separation as a motivating idea 

for block construction so we propose a criterion based upon the 

blocks themselves: that we prefer large dense blocks. Large 

blocks are those which have a large number of members, 

typically sk for block k. The extent to which a size distribution 

tends to a small number of large blocks has long been studied by 

industrial economists when looking at the degree of 

concentration in an economy, in particular the consideration of 

the distribution of sizes of firms in a sector. A popular measure 

is the Herfindahl-Hirschman Index (Herfindahl, 1950; 

Hirschman, 1964), HHI, which is just the sum of squares of the 
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size of each firm. In this formulation size is expressed as a 

proportion of the whole so that concentration indices for sectors 

of different absolute size may be compared. When considering 

the distribution of block sizes this total, the total number of 

objects in the system, is the same for all possible block 

configurations and so we may use just the sum of squared block 

sizes: 

 

HHI  =   sk
2 

     (6) 

               
k 

 

The value of this index increases with increased concentration 

and so we seek a blockmodel which maximises HHI. This 

criterion may be justified on grounds of both parsimony and 

clarity in that we implicitly seek the smallest number of (large) 

blocks as a model. In so doing the most compact description is 

sought. 

 

An acceptable density is set by requiring blocks to have a 

density no less than the parameter , and so, from (4), 

 

 

  xij ik jk  / sk
2
         (7) 

  
i
  

j 

 

Substituting for sk from (2) gives the programme: 

choose  to maximise       (  ik )
2
 

                               
k
     

i 

such that            xij ik jk  - (  ik )
2
     0  ;   k               (8) 

               
i
  

j
                       

i
 

 

and    ik  =  1                    ;     i 

               
k 
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4. Illustration 1: Elective choice 

 

The most frequent application of blockmodel construction is the 

formation of socially interacting groups. As an example thirty 

MBA students were studied. On their programme each student 

must choose five elective courses from sixteen offered. To the 

extent that students choose the same electives they may be said 

to constitute a block and knowledge of these blocks will help in 

the understanding of common interests and so the structure of 

the programme as experienced by the students. The number of 

electives common to each pair of students was used to form the 

binary relations by coding 

 

    xij  = 1  if students i and j have 3 or more electives in common 

          =  0 otherwise 

 

The result of making maximum density blocks (  = 1) using (8) 

is shown in Figure 1. Rows and columns represent students and 

each shaded cell represents an interaction (xij  = 1). The ten 

blocks are labelled A to J and their sizes given in the last column 

of Table 1. The concentration for this model is HHI = 136. The 

main blocks may be described as: 

 

(A) Corporate   mainly interested in finance and 

strategy 

(B) Marketeers  also an interest in finance and 

strategy but with a stronger common 

interest in marketing 

(C) Changers focus on change management and 

negotiating 

(D) Entrepreneurs concerned with small business 

management and entrepreneurship 
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Block densities may be appreciated from Figure 1 and are also 

given in Table 1 from which it would be easy to make an image 

matrix by choosing a cutoff value, but this is not the focus of 

this paper. The blocks and their interaction as measured by the 

density matrix provide a structural description of the interests of 

this group of students. That finance and strategy are important to 

MBA students is hardly a surprise and the analysis reflects this. 

The small group of changers is perhaps less expected and may 

indicate a possible syllabus development. 

 

 

5.  Illustration 2: Performance ranking 

 

Ranking according to aggregated performance measures is 

increasingly popular, despite the practical difficulties frequently 

encountered: it is not uncommon that the constituent measures 

are chosen as much for their availability as for their desirability. 

In addition, the relative importance given to each constituent is, 

though sensible, usually somewhat arbitrary. This uncertainty 

about weights must necessarily result in some doubt as to 

whether, in all cases, those organisations being assessed really 

do exhibit performances  significantly different from each other. 

Despite these problems such rankings will continue to be 

published. We examine here the second difficulty; uncertainty 

about weights. The difficulties surrounding the selection and 

measurement of appropriate characteristics, while real, do not 

undermine what follows as an illustration of blockmodel 

construction. 

 

The Times annually publishes a ranking of the 97 British 

Universities. The ranking published on 14th. April 2000 was 

based on nine attributes: 

 

1.  Teaching quality assessment score 
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2.  Research assessment exercise score 

3.  A level score for entrants 

4.  Student / staff ratio 

 5.  Library and computer spending per student 

 6.  Spending on facilities per student 

 7.  Percentage graduating with a First or 2(i) 

 8.  Percentage finding employment within six months of 

                graduating 

 9.  Completion rate 

 

In each case a total or mean was taken across all departments for 

the whole university. Values were scaled as proportions of the 

maximum score achieved for each attribute. The base measures 

all logically have a lower bound of zero which is never observed 

since even the weakest institution can register some level of 

activity. Consequently the more common scaling to a [0,1] scale 

via a value function using maxima and minima found in the data 

is preferred and the results of both calculations are shown in 

Table 2 for the top twenty universities of The Times listing. 

Even this change has nontrivial effects: Warwick is elevated 

from ninth to fourth and King’s falls from fifteenth to twentieth. 

However, the main purpose here is to examine the effects of 

uncertainty about weights. The Times gave teaching quality a 

relative weight of 2.5, research 1.5 and the rest 1.0. For 

calculation weights were found by scaling these relative values 

to sum to 1. Illustrative levels of uncertainty were modelled for 

each by a rectangular distribution with limits  25% of the 

weight. The requirement that weights sum to 1 means that they 

cannot be treated as independent random variables and so 

simulation was used to find the standardised difference, zij , for 

each pair, i and j, of universities: 

 

 zij  =  (qi – qj) / ij     (9) 
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where qi is the weighted aggregate score for university i and ij 

is the standard deviation of the difference (qi – qj). The matrix Z 

is recoded to give X according to whether the difference is 

statistically significant: 

 

 xij  =  1  if  zij < z* 

       =  0 otherwise 

 

where z* is chosen to correspond to a given significance level. 

In this example, conservatively, z* = 3. The  resulting 

blockmodel is shown in Figure 2 and Table 3 and in the last 

column of Table 2.  

 

Rather than the strict ranking of the twenty universities only 

three seem to be clearly distinct: Cambridge, Oxford and King’s,  

with Imperial nearly so. These universities have performance 

levels significantly different from all others. UCL and Lancaster 

are also distinctive. The three main blocks are, in performance 

order, 

 

Warwick, LSE, Bristol 

Nottingham, Durham, Bath, York 

Manchester, Sheffield, Birmingham, Newcastle, SOAS 

 

These three blocks account for twelve of the twenty universities. 

Two aspects of this structure are notable. First, the complete 

lack of interaction between the three blocks, suggesting that the 

differences between them are substantial. Second, that the size 

of the block increases, albeit slightly, as one moves down the list 

reflecting, perhaps, the distinctiveness of superior performers.  
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Made in this way performance assessments are given in blocks 

of universities, the performance of the members of each being 

sensibly indistinguishable, together with some universities with 

performance levels distinctly different from others. It is not 

uncommon for these singletons to be found at the head of a 

ranking. Such a mix of blocks and singletons provides a more 

natural articulation of performance differences than an uneasily 

enforced strict  ranking dependent, in part, upon spuriously 

precise weights.  

 

 

6.  Illustration 3: Recovering a known pattern 

 

Clustering methods uncover structure but the structure 

uncovered depends in part on the method: it is not the structure 

which is found, rather a structure which is suggested. It is 

therefore not possible to prove a method in the normal sense 

because that would require that a true structure was known in 

advance, which could only occur with problems of such 

simplicity that they provide no real test at all. Nonetheless, an 

illustration is offered in Figure 3. The data are artificial. The 

underlying structure of three blocks and three singletons was 

decided and then the noise provided by off-diagonal interactions 

added in a haphazard way. The model successfully detected the 

initial pattern. This small example may permit some confidence 

that the method has value. 

 

 

7.  Computational note 

 

The results discussed above were found as the solutions to the 

quadratic programme (8). Because this formulation is of a 

standard form proprietary software may be used, and was here. 

An alternative is provided by a heuristic based on the 
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construction of blocks, node by node, in decreasing order of 

block size. Broadly, this is achieved by selecting at each stage 

the node with the highest connectivity, Ci = j xij. A full 

description is given by  Jessop (2002). Table 4 compares the 

results given by the two methods. The solutions provided by the 

quadratic programme are, of course, not inferior. For the 

electives data the solution is clearly superior to that given by the 

heuristic, giving larger blocks, a reduced number of singletons, 

and so a more compact description. For the university ranking 

data the results are a little different in detail but give the same 

HHI and by the same distribution of block sizes: the optimum is 

not unique. As can be seen from Figures 1 and 2 the electives 

matrix is the more dense and so presents the opportunity of a 

greater number of good, if not optimal, solutions, whereas for 

the more sparse matrix these opportunities are necessarily fewer. 

 

 

8. Discussion 

 

The method presented here provides a conceptually simple 

criterion for the formation of blocks from a binary matrix of 

interactions without the requirement for any prior specification 

of desired structure. There are a number of parameters which 

must be set. First, the cutoff needed to obtain binary relations 

from some other measure of interaction; here the number of 

electives, 3, and the value of standardised difference, also 3. 

Second, the smallest level of density, , permissible for block 

formation. Although this may at first appear to present a fine 

level of control, most of the cases presented for analysis 

comprise, as do the two illustrations above, twenty or thirty 

objects and this results in maximum block sizes of about six. In 

these cases the changes to  required to generate alternative 

blockmodels are likely to be somewhat coarse. In any case, the 
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interpretation of blocks of less that maximum density may not 

always be clear. It is likely that leaving =1 and varying the 

cutoff value used to obtain the binary relations from the data 

will give a more readily interpretable model. As a lower bound, 

and given the likely presence of two or more singletons,  it is 

necessary to have >0.5 to prevent the combination of two 

unconnected singletons into a spurious block. Third, the level  

required to form an image matrix in (5) must be set. This stage 

was not used in the applications described above. Setting levels 

for parameters may seem to be somewhat arbitrary but these 

articulations of judgement are unavoidable just as they are, for 

instance, when determining confidence levels for statistical 

inference. 

 

In some applications, notably the sociological, singletons, or 

even pairs, may not be acceptable for the very idea of a social 

group would seem to rule out these small blocks. On the other 

hand, it might be argued that identifying such people (objects) as 

a first stage is itself useful, for while a group of one may be 

thought an oxymoron loners do exist. If it is thought desirable to 

impose a minimum block size then this may be done using a 

standard linear programming formulation (e.g. Wisniewski and 

Dacre, 1990: Ch. 10). 

 

The optimum may not be unique. Alternative optima may arise 

in two ways. First, different distributions of block sizes may 

have the same value of HHI, as in the following mappings of 

eighteen nodes into four blocks – [8,6,2,2] and [7,7,3,1] – which 

both have HHI = 108. Using a power greater than two in the 

objective function will resolve this in favour of distributions 

with larger blocks; the first in this case. However high the power 

this situation may still arise, though less frequently. Second, it 

may be that the same distribution of block sizes arises through 
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more than one assignment of objects to blocks, as was the case 

with the two solutions to the universities model (Table 4). In this 

case the differences were slight. The practical significance of the 

existence of more than one optimum blocking will depend on 

the application. If the purpose of the model is to provide a useful 

disaggregation of a design problem into smaller sub-problems 

then it is likely to be unimportant, for what is needed is a 

disaggregation which is useful rather than in some strict sense 

optimal. If the purpose is to provide performance rankings then 

the position of an organisation in those rankings, including the 

block of which it is a member, may matter. All such analyses, 

whichever method is used, contain, to some degree,  

imprecisions and arbitrariness and as a result must be treated 

with circumspection. The method described here is no different, 

though the simplicity of formulation, being based on a clearly 

stated criterion, should assist in the interpretation of results. 
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                                             block 

A B C D E F G H I J block size 

100 38 29 8 25 0 38 19 0 38 A 8 

 100 22 11 0 0 0 25 17 0 B 6 

  100 22 17 0 17 17 0 0 C 3 

   100 0 0 0 0 0 33 D 3 

    100 0 0 25 0 0 E 2 

     100 0 25 0 0 F 2 

      100 25 0 0 G 2 

       100 0 0 H 2 

        100 0 I 1 

         100 J 1 

 

Table 1. 

Illustration 1: Electives  – density matrix (%) and block sizes. 
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University The Times ranking Revised value function ranking Block 

Cambridge 1 1 E 

Oxford 3 2 G 

London, Imperial 2 3 F 

Warwick 9 4 C 

LSE 8 5 C 

Bristol 4 6 C 

Edinburgh 6 7 D 

St. Andrews 7 8 D 

Nottingham 12 9 B 

Durham 16 10 B 

Bath 10 11 B 

York 11 12 B 

London, UCL 5 13 H 

Lancaster 19 14 J 

Manchester 18 15 A 

Sheffield 20 16 A 

Birmingham 13 17 A 

Newcastle 17 18 A 

London, SOAS 14 19 A 

London, King's 15 20 I 

 

Table 2.   The Times top twenty British Universities. 
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                 block  

A B C D E F G H I J block size 

100 0 0 0 0 0 0 0 0 40 A 5 

 100 0 63 0 0 0 75 0 0 B 4 

  100 50 0 33 0 0 0 0 C 3 

   100 0 0 0 0 0 0 D 2 

    100 0 0 0 0 0 E 1 

     100 0 0 0 0 F 1 

      100 0 0 0 G 1 

       100 0 0 H 1 

        100 0 I 1 

         100 J 1 

 

 

Table 3. 

 Illustration 2: Universities  – density matrix (%) and block 

sizes. 
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 Illustration 1: Electives  Illustration 2: Universities 

block Quadratic Programme 

HHI = 136 

Heuristic 

HHI = 108 

 Quadratic Programme 

HHI = 60 

Heuristic 

HHI = 60 

A 5,9,14,16,18,25,26,29 1,3,4,5,16,18,25  13,14,17,18,20 13,14,17,18,20 

B 3,4,10,21,23,30 9,14,26,29  10,11,12,16 6,11,12,16 

C 1,13,2719,22,24 10,21,23,30  4,8,9 4,8,9 

D 2,7 22,24,27  6,7 5,10 

E 17,28 2,7  1 1 

F 6,20 6,20  2 2 

G 8,11 8,28  3 3 

H 12 11  5 7 

I 15 12  15 15 

J  13  19 19 

K  15    

L  19    

M  17    

 

Table 4. Comparison of blocks found by quadratic programme 

and by heuristic. 

 

The numbers arbitrarily label students; universities are identified 

by the ranks given by The Times (Table 2, second column). 
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Figure 1.    

 

Electives: interaction diagram (density = 29%). 

Letters are blocks. 
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  A B C D E F G H 1 J 

  13 14 17 18 20 10 11 12 16 4 8 9 6 7 1 2 3 5 15 19 
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7                     

E 1                     
F 2                     
G 3                     
H 5                     
I 15                     
J 19                     

 

 

Figure 2. 

 

Universities: interaction diagram (density = 22%). 

Numbers show Universities in The Times original ranking 

(Table 2). 

 

 



 

~  26  ~ 

 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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Figure 3. 

 

Test data: model replicates (density = 38%). 

 

 


