Skip to main content

Research Repository

Advanced Search

Stable strontium isotopic heterogeneity in the solar system from double-spike data

Charlier, B.L.A.; Parkinson, I.J.; Burton, K.W.; Grady, M.M.; Wilson, C.J.N.; Smith, E.G.C.

Stable strontium isotopic heterogeneity in the solar system from double-spike data Thumbnail


Authors

B.L.A. Charlier

I.J. Parkinson

M.M. Grady

C.J.N. Wilson

E.G.C. Smith



Abstract

Strontium isotopic anomalies in meteorites are important in assessing nucleosynthetic sources to, and measuring the timing of, early solar system processes. However, conventional use of a constant 88Sr/86Sr value in correcting for instrumental mass fractionation during analysis renders measurements ambiguous and removes information on mass-dependent fractionation variations. From double-spike techniques we obtain data for the four stable strontium isotopes free of this ambiguity, and report measurements from a range of meteoritic, lunar and terrestrial materials. The Earth, Moon, basaltic eucrites and feldspars from angrites (differentiated samples) follow a single mass-dependent fractionation line and have a common nucleosynthetic origin in terms of their strontium isotopes. In contrast, bulk rock CI, CV3, CM and CO chondrite samples serve to define another mass-dependent fractionation line, displaced by 94 ± 28 ppm to heavier 84Sr/86Sr and/or 88Sr/86Sr ratios than that for the differentiated samples. Our Sr-isotopic data are consistent with a primary contrast in early solar system composition between an outer zone of primitive, mostly undifferentiated, materials and an inner zone of (almost entirely) differentiated materials that accumulated to form the terrestrial planets.

Citation

Charlier, B., Parkinson, I., Burton, K., Grady, M., Wilson, C., & Smith, E. (2017). Stable strontium isotopic heterogeneity in the solar system from double-spike data. Geochemical perspectives letters, 4, 35-40. https://doi.org/10.7185/geochemlet.1733

Journal Article Type Article
Acceptance Date Aug 4, 2017
Online Publication Date Sep 15, 2017
Publication Date Sep 15, 2017
Deposit Date Oct 17, 2017
Publicly Available Date Nov 15, 2017
Journal Geochemical Perspectives Letters
Print ISSN 2410-339X
Electronic ISSN 2410-3403
Publisher European Association of Geochemistry (EAG)
Peer Reviewed Peer Reviewed
Volume 4
Pages 35-40
DOI https://doi.org/10.7185/geochemlet.1733

Files






You might also like



Downloadable Citations