Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Late diagenesis of illite-smectite in the Podhale Basin, southern Poland : chemistry, morphology, and preferred orientation.

Day-Stirrat, Ruarri J. and Aplin, Andrew C. and Kurtev, Kuncho D. and Schleicher, Anja M. and Brown, Andrew P. and Środoń, Jan (2017) 'Late diagenesis of illite-smectite in the Podhale Basin, southern Poland : chemistry, morphology, and preferred orientation.', Geosphere., 13 (6). pp. 2137-2153.

Abstract

Well-characterized samples from the Podhale Basin, southern Poland, formed the basis for exploring and illuminating subtle diagenetic changes to a mudstone toward the upper end of the diagenetic window, prior to metamorphism.Transmission electron microscopy (TEM) performed on dispersed grains and ion-beam thinned preparations, selected area diffraction patterns,and chemistry by TEM-EDS (energy dispersive spectra) augmented mineralogy and fabric data. The deepest samples show no change in their percent illite in illite-smectite (I-S), yet I-S–phase octahedral Fe3+ and Al3+ are statistically different between samples. A decrease in the Fe3+ concentration in the octahedral sheet correlates with an increase in I-S fabric intensity and apparent crystallinity. The D-statistic from the Kolmogorov-Smirnov test on TEM- EDS data describes statistical differences in the I-S chemistry. Previous work on these samples showed a significant increase in the preferred orientation of the I-S phase across the smectite to illite transition and a significant slowdown in the rate of development of preferred orientation beyond the termination of smectite illitization. Lattice fringe images describe an I-S morphology that coalesces into larger and tighter packets with increasing burial temperature and a decrease in I-S packet contact angle, yet some evidence for smectite collapse structures is retained. The deepest sample shows the thickest, most coherent I-S packets. We propose that the deepest samples in the Podhale Basin describe the precursor stage in phyllosilicate fabric preferred orientation increase from diagenesis into metamorphism, where continued evolution of crystallite packets and associated crystallinity create higher I-S fabric intensities as the structural formulae of I-S approach an end-member composition.

Item Type:Article
Full text:(AM) Accepted Manuscript
First Live Deposit - 26 October 2017
Download PDF
(1463Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1130/GES01516.1
Record Created:26 Oct 2017 15:28
Last Modified:05 Oct 2018 09:49

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library