ASYMPTOTIC ANALYSIS OF STRATIFIED ELASTIC MEDIA IN THE SPACE OF FUNCTIONS WITH BOUNDED DEFORMATION

MICHEL BELLIEUD† AND SHANE COOPER‡

Abstract. We consider a heterogeneous elastic structure which is stratified in one direction. We derive the limit problem under the sole assumption that the Lamé coefficients and their inverses weakly* converge to some Radon measures.

Key words. homogenization, singular perturbations, elasticity

AMS subject classifications. 35B25, 49Q20, 74B05, 74Q05

DOI. 10.1137/16M107551X

1. Introduction. In this paper, we study the asymptotic behavior of the three-dimensional isotropic linear elasticity problem

\begin{equation}
-\text{div} (\lambda e(u) \text{tr}(e(u)) I + 2\mu e(u)) = f \quad \text{in } \Omega, \quad u \in H^1_0(\Omega; \mathbb{R}^3),
\end{equation}

where the Lamé coefficients \(\lambda, \mu\) and their inverses are bounded in \(L^1(\Omega)\) and weakly* converge to some measures. We determine the limit problem in terms of these measures in the case when \(\lambda\) and \(\mu\) depend only on one variable. Our results have been announced in [13].

It is well known that when the Lamé coefficients are uniformly bounded from above and below by positive constants, the sequence of the solutions to (1) converges, up to a subsequence, to the solution of a problem of the form \(-\text{div} a^{eff} e(u) = f\) (see [37, property 4, p. 374]). Under suitable periodicity assumptions, the effective tensor \(a^{eff}\) can be characterized by means of the theory of homogenization [16], [29], [37], [43], [52]. Diverse asymptotic analyses of (1) and of the associated vibration problem have been performed under various hypotheses related to geometry and periodicity when the latter boundedness assumptions fail [1], [7], [8], [9], [12], [14], [15], [20], [23], [40], [44], [45], [46], [47]. In this context, stratified media have recently been investigated in [11], where a two-phase medium comprising a distribution of possibly very stiff homothetical layers alternating with much softer ones is considered. An interesting aspect of this study resides in the possible emergence of higher order derivatives (resp., nonlocal terms) in the effective equations when the Lamé coefficients (resp., their inverses) fail to be bounded in \(L^1\). Let us also notice that spectral properties of high contrast stratified media have been studied in [21], [22], where, in
the presence of a defect, unusual phenomena of "super-exponential" localization of eigenmodes to the vicinity of the defect are demonstrated.

In this paper, both the elasticity coefficients and their inverses are assumed to be bounded in $L^1$. Apart from these boundedness conditions, we make no assumption relating to the oscillatory behavior of these coefficients. In this respect, our analysis is much more far-reaching than that developed in [11]. Unlike [11], its range of application includes both homogenization and singular perturbation problems (see Remark 3.6). Indeed, most of our results do not fall within the scope of [11] (see Remark 3.5). We show that the latter boundedness assumptions in $L^1$ preclude the appearance of higher order derivatives in the limit equations and, in most cases, of nonlocal effects. The sequence of the solutions to (1) is not, in general, bounded in $H^1(\Omega; \mathbb{R}^3)$. The natural functional space is the space of functions with bounded deformation, that is, the set of elements $u$ of $L^1(\Omega; \mathbb{R}^3)$ whose distributional symmetrized gradient $Eu$ is a matrix-valued measure with finite total variation. This space, introduced in [39], [48] (see also [41]), has been intensively investigated in the literature [2], [4], [34], [38], [49], [53], [54]. A significant feature of our results is that the effective problem depends only on the limit measures of the elasticity coefficients and of their inverses, not on the sequences themselves, provided these measures have no common atom. Otherwise, the arbitrary choice of the converging sequences leads to infinitely many distinct limit problems, some exhibiting nonlocal terms (see Remark 3.7). Similar properties were already known for diffusion problems in stratified media [17] (see Remark 3.12). The generalization of such results to elasticity is anything but straightforward, because effective problems may take a much more complicated form. More precisely, the limit energy associated to a sequence of linear elasticity problems can be any nonnegative lower semicontinuous quadratic form on $L^2(\Omega; \mathbb{R}^3)$ taking vanishing values on the set of rigid motions [18].

We now present our results in more detail. For a given cylindrical bounded open subset $\Omega = (0, L) \times \Omega'$ of $\mathbb{R}^3$ with Lipschitz boundary, we consider the problem (1). The Lamé coefficients are assumed to depend only on the variable $x_1$. We suppose that $\lambda_\varepsilon = l\mu_\varepsilon$ for some nonnegative real $l$ and that the following convergences hold:

$$
\mu_\varepsilon \rightharpoonup m, \quad (\mu_\varepsilon)^{-1} \rightharpoonup \nu \quad \text{weakly* in} \quad \mathcal{M}([0, L]).
$$

Under (2), we prove that the solution $u_\varepsilon$ to (1) weakly* converges in $BD(\Omega)$ to some function $u$ with bounded deformation. This effective displacement is characterized by the emergence of jumps $u^+ - u^-$ at the interfaces $\Sigma_t = \{t\} \times \Omega'$ corresponding to atoms $\{t\}$ of $\nu$, giving rise, if $m$ and $\nu$ have no common atom, to the following concentrations of elastic energy:

$$
\frac{1}{2} \nu(\{t\})^{-1} \int_{\Sigma_t} (u^+ - u^-) \cdot A(u^+ - u^-) d\mathcal{H}^2,
$$

where $A$ is given by (25). Concentrations of elastic energy also appear on the planes $\Sigma_t$ corresponding to atoms of $m$. These extra terms are similar to membrane stretching energy and take the form

$$
\frac{1}{2} m(\{t\}) \int_{\Sigma_t} a^\perp e_{x^*}(u^*) : e_{x^*}(u^*) d\mathcal{H}^2,
$$

where the operator $e_{x^*}$ and the fourth order tensor $a^\perp$ are given by (9) and (22), and $u^*$ stands for the precise representative of $u$ (see (4)). A concentration of elastic
energy also emerges on a set of fractal Hausdorff dimension between 2 and 3. It is
given in terms of the Cantor parts \(\nu^e\) and \(m^e\) of the measures \(\nu\) and \(m\) by

\[
\frac{1}{2} \int_\Omega a^\perp \frac{E u}{\nu \otimes L^2} : \frac{E u}{\nu \otimes L^2} d\nu \otimes L^2 + \frac{1}{2} \int_\Omega a^\parallel e_x(u^*) : e_x(u^*) dm^e \otimes L^2,
\]

the tensor \(a^\perp\) being given by (22). The effective displacement \(u\) is a function with bounded deformation and hence is approximately differentiable \(L^3\)-almost everywhere (a.e.) in \(\Omega\) (see Remark 3.4). The bulk effective energy takes the form of a classical linear elastic energy defined in terms of its approximate symmetric gradient \(e(u)\) by

\[
\frac{1}{2} \int_\Omega a e(u) : e(u) dx,
\]

the effective tensor \(a\) being given by (25). The total elastic energy \(F(u)\) is the sum of the terms mentioned above, which can be synthesized as follows:

\[
F(u) = \frac{1}{2} \int_\Omega a^\perp \frac{E u}{\nu \otimes L^2} : \frac{E u}{\nu \otimes L^2} d\nu \otimes L^2 + \frac{1}{2} \int_\Omega a^\parallel e_x(u^*) : e_x(u^*) dm^e \otimes L^2.
\]

The effective displacement is the unique solution to the problem \(\min_{BD^0;\nu^e,\nu^m}(\Omega) F(u) - \int_\Omega f \cdot u dx\), where \(BD^0;\nu^e,\nu^m(\Omega)\) is defined by (84). When the Cantor parts \(\nu^e\) and \(m^e\) vanish and \(\nu\) and \(m\) have a finite number of atoms, this limit problem is equivalent to the system of equations (26).

The paper is organized as follows. The notation is specified in section 2, and the main results are stated in section 3. Section 4 is devoted to the analysis of the asymptotic behavior of the solution to (14), and section 5 presents technical results relating to partial mollification. The proof of the main result (Theorem 3.1) is situated in section 6.

2. Notation. In this article, \(\{e_1, e_2, e_3\}\) stands for the canonical basis of \(\mathbb{R}^3\). Points in \(\mathbb{R}^3\) and real-valued functions are represented by symbols beginning with a lightface lowercase letter (for example, \(x, i, \text{tr} A, \ldots\)), while vectors and vector-valued functions are given by symbols beginning with a boldface lowercase letter (for example, \(u, f, \text{div} \sigma, \ldots\)). Matrices and matrix-valued functions are represented by symbols beginning with a boldface uppercase letter, with the following exceptions: \(\nabla u\) (displacement gradient), \(e(u)\) (linearized strain tensor). We denote by \(u_i\) or \((u)_i\) the components of a vector \(u\) and by \(A_{ij}\) or \((A)_{ij}\) those of a matrix \(A\) (that is, \(u = \sum_{i=1}^3 u_i e_i = \sum_{i=1}^3 (u)_i e_i\) and \(A = \sum_{i,j=1}^3 A_{ij} e_i \otimes e_j = \sum_{i,j=1}^3 (A)_{ij} e_i \otimes e_j\), where \(\otimes\) stands for the tensor product). For any two vectors \(a, b\) in \(\mathbb{R}^3\), the symmetric product \(a \otimes b\) is the symmetric \(3 \times 3\) matrix defined by \(a \otimes b := \frac{1}{2}(a \otimes b + b \otimes a)\). We do not employ the usual repeated index convention for summation. We denote by \(A : B = \sum_{j=1}^3 A_{ij} B_{ij}\) the inner product of two matrices, by \(S^3\) the set of all real symmetric matrices of order 3, and by \(I\) the \(3 \times 3\) identity matrix. We denote by \(L^n\) the Lebesgue measure in \(\mathbb{R}^n\) and by \(H^k\) the \(k\)-dimensional Hausdorff measure.

The letter \(C\) denotes constants whose precise values may vary from line to line. Let \(\Omega := (0, L) \times \Omega'\) be a connected cylindrical open Lipschitz subset of \(\mathbb{R}^3\). For any \(\varphi \in L^1_{\text{loc}}(\Omega; \mathbb{R}^3)\), we denote by \(\varphi^*\) its precise representative, that is,

\[
\varphi^*(x) = \begin{cases} 
\lim_{r \to 0} \int_{B_r(x)} \varphi(y) \, dy & \text{if this limit exists,} \\
0 & \text{otherwise},
\end{cases}
\]
where $B_r(x)$ is the open ball of radius $r$ centered at $x$, and \( \int_{B_r(x)} \psi(y) \, dy := \frac{\int_{B_r(x)} \psi(y) \, dy}{\mathcal{L}^1(B_r(x))} \).

We also set

\[
\varphi^\pm(x) = \begin{cases} 
\lim_{r \to 0} \int_{B_r^+(x)} \psi(y) \, dy & \text{if this limit exists,} \\
0 & \text{otherwise,}
\end{cases}
\]

where

\[
B_r^+(x) := B_r(x) \cap ((x_1, L) \times \Omega'), \quad B_r^-(x) := B_r(x) \cap ((0, x_1) \times \Omega').
\]

The fields $\varphi^*$ and $\varphi^\pm$ are Borel-measurable and take the same values on the Lebesgue points of $\varphi$; thus,

\[
\varphi^\pm = \varphi^* = \varphi \quad \text{\(L^3\)-a.e. in \(\Omega\).}
\]

We denote by $\varphi'$ the element of $L^1_{loc}(\Omega; \mathbb{R}^3)$ defined by

\[
\varphi'_1 = 0, \quad \varphi'_\alpha = \varphi_\alpha \quad \forall \alpha \in \{2, 3\},
\]

and $\tilde{\varphi}$ is the extension of $\varphi$ by 0 into $\mathbb{R}^3$. If $\varphi_2, \varphi_3$ admit weak derivatives with respect to $x_2, x_3$, we set

\[
e_{x_2} = \sum_{\alpha, \beta = 2}^3 \frac{1}{2} \left( \frac{\partial \varphi_\alpha}{\partial x_\beta} + \frac{\partial \varphi_\beta}{\partial x_\alpha} \right) e_\alpha \otimes e_\beta.
\]

The symbol $D\varphi$ represents the distributional gradient of $\varphi$, and $E\varphi := \frac{1}{2}(D\varphi + D\varphi^T)$ is the symmetric distributional gradient of $\varphi$. The space of functions with bounded deformation on $\Omega$ is defined by

\[
BD(\Omega) := \{ \varphi \in L^1(\Omega; \mathbb{R}^3) : E\varphi \in \mathcal{M}(\Omega; \mathbb{S}^3) \},
\]

where $\mathcal{M}(\Omega; \mathbb{S}^3)$ stands for the space of $\mathbb{S}^3$-valued Radon measures on $\Omega$ with bounded total variation. For any $\varphi \in BD(\Omega)$, we denote by $\widetilde{E}\varphi$ the extension of $E\varphi$ by 0 to $\overline{\Omega}$, that is, the element of $\mathcal{M}(\overline{\Omega}; \mathbb{S}^3)$ defined by

\[
\widetilde{E}\varphi(A) := E\varphi(A \cap \Omega) \quad \text{for any Borel subset } A \text{ of } \overline{\Omega}.
\]

For any $x_1 \in [0, L]$, we set

\[
\Sigma_{x_1} := \{x_1\} \times \Omega'.
\]

The symbol $\frac{\lambda}{\theta}$ represents the Radon–Nikodým density of a (finite) vector-valued Radon measure $\lambda$ on $\Omega$ with respect to a positive Radon measure $\theta$ on $\Omega$. For any Borel subset $E$ of $\Omega$, we denote by $\lambda|_E$ the Radon measure defined by $\lambda|_E(A) = \lambda(A \cap E)$.

3. Setting of the problem and results. Let $\Omega := (0, L) \times \Omega'$ be a bounded cylindrical Lipschitz domain of $\mathbb{R}^3$, let $(\lambda_\varepsilon), (\mu_\varepsilon)$ be two sequences in $L^\infty((0, L; \mathbb{R}^+)$ such that $\mu_\varepsilon^{-1} \in L^\infty((0, L; \mathbb{R}^+)$, and let

\[
\nu_\varepsilon := \mu_\varepsilon^{-1} \mathcal{L}^1_{[0, L]}, \quad m_\varepsilon := \nu_\varepsilon \mathcal{L}^1_{[0, L]}.
\]
We are interested in the asymptotic analysis of the sequence of linear elasticity problems
\[
(P_\varepsilon): \begin{cases}
- \text{div}(\sigma_\varepsilon(u_\varepsilon)) = f & \text{in } \Omega, \\
\sigma_\varepsilon(u_\varepsilon) = \lambda_\varepsilon\text{tr}(e(u_\varepsilon))I + 2\mu_\varepsilon e(u_\varepsilon), \quad e(u_\varepsilon) = \frac{1}{2}(\nabla u_\varepsilon + \nabla^T u_\varepsilon), \\
u_\varepsilon \in H^1_0(\Omega; \mathbb{R}^3), \quad f \in L^\infty(\Omega, \mathbb{R}^3),
\end{cases}
\]
under the hypotheses (see Remark 3.3)
\[
\lambda_\varepsilon = l\mu_\varepsilon \quad (l \geq 0), \quad \sup_{\varepsilon > 0} \left( \|\mu_\varepsilon\|_{L^1(0,L)} + \|\mu_\varepsilon^{-1}\|_{L^1(0,L)} \right) < \infty,
\]
\[
m_\varepsilon \overset{\ast}{\rightharpoonup} m, \quad \nu_\varepsilon \overset{\ast}{\rightharpoonup} \nu \quad \text{weakly* in } \mathcal{M}([0,L]).
\]
We emphasize that \(\lambda_\varepsilon\) and \(\mu_\varepsilon\) depend only on \(x_1\). We suppose that \(\nu\) and \(m\) have no common atom (see Remark 3.7), that is,
\[
\mathcal{A}_\nu \cap \mathcal{A}_m = \emptyset, \quad \mathcal{A}_\nu = \{t \in [0, L] ; \nu(\{t\}) > 0\}, \quad \mathcal{A}_m = \{t \in [0, L] ; m(\{t\}) > 0\},
\]
and do not charge the boundary of \([0, L]\) (see Remark 3.8), namely,
\[
m(\{0\}) = m(\{L\}) = \nu(\{0\}) = \nu(\{L\}) = 0.
\]
Under these assumptions, we prove that the sequence of the solutions to (14) weakly* converges in \(BD(\Omega)\) to the unique solution to
\[
\min_{\varphi \in BD_0^{\nu,m}(\Omega)} \int_{\Omega} \frac{1}{2}a(\varphi, \varphi) - \int_{\Omega} f \cdot \varphi \, dx,
\]
where \(BD_0^{\nu,m}(\Omega)\) is the Hilbert space defined by (see (4))
\[
BD_0^{\nu,m}(\Omega) := \left\{ \varphi \in BD(\Omega) \mid \begin{array}{l}
E\varphi \ll \nu \otimes L^2, \quad E_{\varphi} \in L^2_{\nu \otimes L^2}(\Omega; \mathbb{S}^3) \\
\varphi^*_\alpha \in L^2_m(0, L; H^1_0(\Omega)), \quad \alpha \in \{2, 3\} \\
\varphi = 0 \quad \text{on } \partial \Omega
\end{array} \right\}
\]
\[
\|\varphi\|_{BD_0^{\nu,m}(\Omega)} := \left( \int_{\Omega} \left| E_{\varphi} \right|^2 \, d\nu \otimes L^2 \right)^{\frac{1}{2}} + \left( \int_{\Omega} |e_{\varphi}(\varphi^*)|^2 \, dm \otimes L^2 \right)^{\frac{1}{2}},
\]
and \(a(\cdot, \cdot)\) is the continuous coercive symmetric bilinear form on \(BD_0^{\nu,m}(\Omega)\) given by
\[
a(\psi, \varphi) := \int_{\Omega} a^\perp \frac{E_{\varphi}}{\sqrt{\nu \otimes L^2}} : E_{\psi} \, d\nu \otimes L^2 + \int_{\Omega} a^\parallel e_{\varphi}^*(\varphi^*) : e_{\psi}^*(\psi^*) \, dm \otimes L^2
\]
in terms of the fourth order tensors \(a^\perp\) and \(a^\parallel\) defined by
\[
a^\perp \Xi := \begin{pmatrix}
l \text{tr} \Xi + 2\Xi_{11} & 2\Xi_{12} & 2\Xi_{13} \\
2\Xi_{12} & \frac{l^2}{l+2} \text{tr} \Xi + \frac{2l}{l+2} \Xi_{11} & 0 \\
2\Xi_{13} & 0 & \frac{l^2}{l+2} \text{tr} \Xi + \frac{2l}{l+2} \Xi_{11}
\end{pmatrix},
\]
\[
a^\parallel \Gamma := \frac{2l}{l+2} \sum_{\beta=2}^3 \Gamma_{\beta \beta} \sum_{\alpha=2}^3 e_\alpha \otimes e_\alpha + 2 \sum_{\alpha, \beta=2}^3 \Gamma_{\alpha \beta} e_\alpha \otimes e_\beta.
\]
Notice that
\begin{equation}
(a^\perp + a^\parallel)\Xi = l \tr \Xi I + 2\Xi.
\end{equation}

Equivalently, we have (see Remark 3.4)
\begin{equation}
\begin{aligned}
a(\psi, \varphi) &= \int_\Omega a(e(\psi)) e(\varphi) \, dx + \sum_{t \in A_\nu} m(\{t\}) \int_{\Sigma_t} (\psi^+ - \psi^-) \cdot A(\varphi^+ - \varphi^-) \, dH^2 \\
&\quad + \sum_{t \in A_m} \int_{\Sigma_t} a^\parallel e_x'(\psi^*) : e_x'(\varphi^*) \, dH^2 \\
&\quad + \int_\Omega a^\perp E_{\varphi}^\perp \cdot E_{\psi}^\perp \, dx + \int_\Omega a^\parallel e_x'(\psi^*) : e_x'(\varphi^*) \, dm^c \otimes \mathcal{L}^2,
\end{aligned}
\end{equation}

where \( \varphi^\pm, \Sigma_t \) are defined by (5), (12), \( m^c \) stands for the Cantor part of \( m \) (resp., \( m^c \)), \( e(\varphi) \) is the approximate symmetric differential of \( \varphi \), and
\begin{equation}
a := \left( \frac{c}{l} \right)^{-1} a^\perp + \frac{c}{l} a^\parallel, \quad A := \begin{pmatrix} l + 2 & 0 \\ 0 & 1 \end{pmatrix}.
\end{equation}

**Theorem 3.1.** The space \( BD_0^{\nu,m}(\Omega) \) defined by (19) and endowed with the norm (20) is a Hilbert space. Under the assumptions (15), (16), and (17), the symmetric bilinear form \( a(\cdot, \cdot) \) defined by (21) or (24) is coercive and continuous on \( BD_0^{\nu,m}(\Omega) \). The sequence of the solutions to (14) weakly* converges in \( BD(\Omega) \) to the unique solution to (18).

We can derive the PDE system associated with (18) when \( \nu \) and \( m \) have vanishing Cantor parts and a finite number of atoms.

**Corollary 3.2.** If \( \nu^c = m^c = 0 \) and \( A_\nu, A_m \) are finite, the problem (18) is equivalent to
\begin{equation}
\begin{aligned}
- \text{div} (ae(u)) &= f \quad \text{in} \quad \Omega \setminus \Sigma, \quad u \in BD_0^{\nu,m}(\Omega), \\
\nu(\{t\})^{-1} A(u^+ - u^-) &= (ae(u)e_1)^- = (ae(u)e_1)^+ \quad \text{on} \quad \Sigma_t \forall t \in A_\nu, \\
(ae(u)e_1)^- - (ae(u)e_1)^+ - m(\{t\}) \text{div}_x a^\parallel e_x'(u^*) &= 0 \quad \text{on} \quad \Sigma_t \forall t \in A_m,
\end{aligned}
\end{equation}

where \( (ae(u)e_1)^+ \) (resp., \( (ae(u)e_1)^- \)) denotes the trace of \( ae(u)e_1 \) on the right (resp., left) face of \( \Sigma_t \), and
\begin{equation}
\Sigma := \Sigma_\nu \cup \Sigma_m, \quad \Sigma_\nu := \bigcup_{t \in A_\nu} \Sigma_t, \quad \Sigma_m := \bigcup_{t \in A_m} \Sigma_t.
\end{equation}

**Remark 3.3.** The conclusions of Theorem 3.1 are unchanged if the assumption \( \lambda_\epsilon = l_\epsilon \mu_\epsilon \) in (15) is replaced by \( \lambda_\epsilon = l_\epsilon \mu_\epsilon \), where \( (l_\epsilon) \) is a sequence of positive real numbers converging to some \( l \in [0, +\infty) \).

**Remark 3.4.** The equivalence between (21) and (24) derives from fine properties of functions with bounded deformations. More precisely, the symmetric distributional derivative \( E\varphi \) of any \( \varphi \in BD(\Omega) \) can be decomposed into an absolutely continuous part \( E^a \varphi \) with respect to \( \mathcal{L}^1 \), a jump part \( E^j \varphi \), and a Cantor part \( E^c \varphi \). The Cantor part vanishes on any Borel set which is \( \sigma \)-finite with respect to \( \mathcal{H}^2 \). Any element \( \varphi \)
of $BD(\Omega)$ is approximately differentiable $L^3$-a.e. in $\Omega$ [2, Theorem 7.4], [34]. This means that, for $L^3$-a.e. $x \in \Omega$, there exists a $3 \times 3$ matrix $\nabla \varphi(x)$ such that
\[
\lim_{r \to 0^+} \int_{B_r(x)} \frac{|\varphi(y) - \varphi(x) - \nabla \varphi(x)(y - x)|}{r} \, dy = 0.
\]

The absolutely continuous part of $E \varphi$ with respect to $L^3$ is given in terms of the approximate symmetric differential $e(\varphi) = \frac{1}{2}(\nabla \varphi + \nabla^T \varphi)$ by
\[
E^a \varphi = e(\varphi)L^3.
\]

When $E \varphi \ll L^3$, $e(\varphi)$ is the weak symmetric gradient of $\varphi$. The jump part takes the form $E^j \varphi = E \varphi_{/j^\varphi}$, where the “jump set” $J_{/\varphi}$ is a countably $H^2$-rectifiable subset of $\Omega$ (i.e., there exist countably many Lipschitz functions $f_i : \mathbb{R}^2 \to \Omega$ such that $H^2(J_{/\varphi} \setminus \bigcup_{i=1}^\infty f_i(\mathbb{R}^2)) = 0$; see [3, Definition 2.57]). For any countably $H^2$-rectifiable Borel set $M \subset \Omega$, the following holds (see [53, Chapter II], [2, eq. (3.2), p. 209]):
\[
E \varphi_{/M} = (\varphi^+_M - \varphi^-_M) \circ n_M H^2_{/M},
\]
where $n_M(x)$ is a unit normal to $M$ at $x$, and $\varphi^+_M$ is deduced from (5) by substituting $B^+_r(x, n_M) := \{ y \in B_r(x), \pm(y - x) \cdot n_M(x) > 0 \}$ for $B^+_r(x)$. In particular, we have
\[
E^j \varphi = (\varphi^+_{/\varphi} - \varphi^-_{/\varphi}) \circ n_{/\varphi} H^2_{/\varphi}.
\]

Due to its absolute continuity with respect to $\nu \otimes L^2$, the symmetric distributional gradient of an element of $BD_0^{\nu, m}(\Omega)$ enjoys a specific decomposition. The measure $\nu$ (resp., $m$) can be split into an absolutely continuous part $\nu^a$ (resp., $m^a$) with respect to the Lebesgue measure, a singular part without atom or Cantor part $\nu^c$ (resp., $m^c$), and a purely atomic part $\nu^at$:
\[
\nu = \nu^a + \nu^c + \nu^at, \quad \nu^at = \sum_{t \in A_n} \nu(t) \delta_t, \quad \nu^a = \frac{\nu}{L^1} L^1,
\]
\[
m = m^a + m^c + m^at, \quad m^at = \sum_{t \in A_m} m(t) \delta_t, \quad m^a = \frac{m}{L^1} L^1.
\]

We have $\nu^a \otimes L^2 \ll L^3$ and $\nu^at \otimes L^2 \ll H^2_{/\Sigma_\nu}$, where $\Sigma_\nu$ is given by (27). The measures $\nu^c \otimes L^2$ and $L^3$ are mutually singular. If $A$ is a Borel subset of $\Omega$ that is $\sigma$-finite with respect to $H^2$, then by Fubini’s theorem, $\nu^c \otimes L^2(A) = \int_{(0, L)} H^2(A \cap \Sigma_{t_1}) \, dt_1 = 0$ because $\{ t_1 \in (0, L), H^2(A \cap \Sigma_{t_1}) > 0 \}$ is at most countable and thus $\nu^c$-negligible. Accordingly, there exists a Borel partition of $\Omega$, $\Omega = \Omega^a \cup \Omega^c \cup \Omega^at$ with $\Omega^at = \Sigma_{/\nu}$ (see (27)) such that
\[
\nu^a \otimes L^2 = \nu \otimes L^2_{/\Omega^a} = \frac{\nu}{L^{1/2}} L^3_{/\Omega^a}, \quad \nu^c \otimes L^2 = \nu \otimes L^2_{/\Omega^c},
\]
\[
\nu^at \otimes L^2 = \nu \otimes L^2_{/\Sigma_{/\nu}} = \sum_{t \in A_n} \nu(t) H^2_{/\Sigma_{/\nu}}.
\]

The condition $E(\varphi) \ll (\nu^a + \nu^c + \nu^at) \otimes L^2$, satisfied by any element $\varphi$ of $BD_0^{\nu, m}(\Omega)$, implies $E^a \varphi \ll \nu^a \otimes L^2$, $E^c \varphi \ll \nu^c \otimes L^2$, $E^j \varphi \ll H^2_{/\Sigma_{/\nu}}$, and
\[
E^a \varphi = \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Omega^a}, \quad E^c \varphi = \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Omega^c}, \quad E^j \varphi = \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Omega^at},
\]
\[
E^a \varphi = \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Omega^a}, \quad E^c \varphi = \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Omega^c}, \quad E^j \varphi = \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Omega^at},
\]
\[
E^j \varphi = \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Sigma_{/\nu}} \nu^at \otimes L^2 = \sum_{t \in A_n} \frac{E \varphi}{\nu \otimes L^2} \mathbf{1}_{\Sigma_{/\nu}} \nu(t) H^2_{/\Sigma_{/\nu}}.
\]
In particular we have $J_\varphi \subset \Sigma_\nu$, and therefore by (27), (30),
\begin{equation}
E^j \varphi = E\varphi|_{\Sigma_\nu} = \sum_{t \in A_\nu} (\varphi^+ - \varphi^-) \otimes e_1 H^2_{[\Sigma_t]}.
\end{equation}

Taking (28) into account, we infer
\begin{equation}
E \varphi = e(\varphi) L^3 + \frac{E^\varphi}{\nu \otimes \mathcal{L}^2} \nu \otimes \mathcal{L}^2 + \sum_{t \in A_\nu} (\varphi^+ - \varphi^-) \otimes e_1 H^2_{[\Sigma_t]}.
\end{equation}

We deduce from (28), (33), and (34) that $\frac{E^\varphi}{\nu \otimes \mathcal{L}^2} = (\nu(t))^{-1} e(\varphi) L^3$-a.e. in $\Omega$ and
\begin{equation}
\frac{\nabla \varphi}{\nu \otimes \mathcal{L}^2} = (\nu(t))^{-1} (\varphi^+ - \varphi^-) \otimes e_1 H^2$-a.e. in $\Sigma_t$ for all $t \in A_\nu$, and then from (33) we deduce that
\begin{equation}
E\varphi = \nu \otimes \mathcal{L}^2$-a.e. in $\Omega$ \quad \forall \varphi \in BD^0_{\nu,m}(\Omega).
\end{equation}

By (32), (36), and the formula $a \cdot (b \otimes e_1) = (c \otimes e_1) = c \cdot Ab$ for all $b,c \in \mathbb{R}^3$ (see (22) and (25)), the following holds for $\varphi, \psi \in BD^0_{\nu,m}(\Omega)$:
\begin{equation}
\int_{\Omega} a^\perp \frac{E \varphi}{\nu \otimes \mathcal{L}^2} : \frac{E \psi}{\nu \otimes \mathcal{L}^2} d\nu \otimes \mathcal{L}^2
\end{equation}
\begin{equation}
= \int_{\Omega} (\nu(t))^{-1} a^\perp e(\psi) : e(\varphi) d\mathcal{L}^3 + \int_{\Omega} a^\perp \frac{E^\varphi}{\nu \otimes \mathcal{L}^2} : \frac{E^\psi}{\nu \otimes \mathcal{L}^2} d\nu \otimes \mathcal{L}^2
\end{equation}
\begin{equation}
+ \sum_{t \in A_\nu} \int_{\Sigma_t} (\nu(t))^{-1} (\varphi^+ - \varphi^-) \cdot A(\varphi^+ - \varphi^-) d\mathcal{H}^2.
\end{equation}

On the other hand, by (31) we have
\begin{equation}
\int_{\Omega} a^\parallel e_{\varphi}^\perp(\psi^*) : e_{\varphi}^\perp(\psi^*) d\mathcal{L}^2
\end{equation}
\begin{equation}
= \int_{\Omega} \frac{m}{\nu} a^\parallel e_{\varphi}^\perp(\psi^*) : e_{\varphi}^\perp(\psi^*) dx + \int_{\Omega} a^\parallel e_{\varphi}^\perp(\psi^*) : e_{\varphi}^\perp(\psi^*) d\mathcal{L}^2
\end{equation}
\begin{equation}
+ \sum_{t \in A_\nu} \int_{\Sigma_t} a^\parallel e_{\varphi}^\perp(\psi^*) : e_{\varphi}^\perp(\psi^*) d\mathcal{H}^2.
\end{equation}

Combining (21), (37), and (38), noticing that, by (7) and (22),
\begin{equation}
\int_{\Omega} \frac{m}{\nu} a^\parallel e_{\varphi}^\perp(\psi^*) : e_{\varphi}^\perp(\psi^*) dx = \int_{\Omega} \frac{m}{\nu} a^\parallel e(\psi) : e(\varphi) dx,
\end{equation}
and taking into account (25), we obtain (24). Notice that when $\nu^c$ vanishes, the space $BD^0_{\nu,m}(\Omega)$ is a subspace of the space of special functions with bounded deformation defined by $SBD(\Omega) := \{ \varphi \in BD(\Omega), E^c \varphi = 0 \}$ (see [2], [5], [6], [19]).

Remark 3.5 (comparison with the results of [11]). The paper [11] investigates the linear elastodynamic equations associated with (14) when $\mu_\varepsilon$ is given by
\begin{equation}
\mu_\varepsilon = \mu_0 \mathbb{1}_{(0,L) \setminus C_\varepsilon}(x_1) + \mu_1 \mathbb{1}_{C_\varepsilon}(x_1), \quad C_\varepsilon = \bigcup_{a \in A_\varepsilon} a + r_\varepsilon \left(-\frac{1}{2}; \frac{1}{2}\right),
\end{equation}
where $A_{\varepsilon}$ is a finite subset of $(0, L)$, $r_{\varepsilon}$ is a small parameter satisfying $r_{\varepsilon} < \varepsilon := \inf_{a, b \in A_{\varepsilon}, a \neq b} |b - a|$, and $(\mu_{\varepsilon}), (\mu_{1\varepsilon})$ are two sequences of positive reals. Except in one case (see [11, section 3.1, case 0 < $k < +\infty$]), this paper studies instances when one of the sequences $(\mu_{\varepsilon})$ or $(\mu_{1\varepsilon})$ is unbounded in $L^1(0, L)$. This case corresponds to $\mu_{1\varepsilon} = 0$, $r_{\varepsilon} \ll \varepsilon$, and $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mu_{1\varepsilon} = k \in (0, +\infty)$. Then the conclusions of Theorem 3.1 can be obtained in the context of [11]. More precisely, the sequence $(\mu_{\varepsilon})$ (resp., $(\mu_{1\varepsilon})$) weakly* converges in $M((0, L))$ to $m = (\mu_{0}+nk)L^1$ (resp., $\nu = \frac{1}{m}L^1$) for some function $n \in L^\infty(0, L)$, defined by [11, Formula (3.16)], which characterizes the rescaled effective number of sections of stiff layers per unit length in the $e_1$ direction. By (16), (19), and (27), the following hold: $A_{\varepsilon} = A_{m} = \emptyset$, $\Sigma = \emptyset$, $BD^{0,m}_{\nu}(\Omega) = H^{1}_{0}(\Omega; \mathbb{R}^3)$. The sequence of the solutions to (14) is bounded in $H^{1}_{0}(\Omega; \mathbb{R}^3)$ and weakly converges to the solution to the problem given, in accordance with (26), by

$$\begin{align*}
\left\{ - \nabla e(u) = f \text{ in } \Omega, \quad u \in H^{1}_{0}(\Omega; \mathbb{R}^3), \\
{\boldsymbol{a}} = \mu_{0}(a^{\perp} + a^{\parallel}) + nka^{\parallel}.
\right.
\end{align*}$$

Taking into account (23) and setting $\lambda_{0} := l\mu_{0}$, $\sigma_{0}(u) := \mu_{0}(a^{\perp} + a^{\parallel})e(u) = \lambda_{0} \text{tr}(e(u))I + 2\mu_{0}e(u)$, $\sigma_{x}(u) := a^{\parallel}e(u)$, this effective problem can be rewritten under the form

$$\begin{align*}
\left\{ - \nabla \sigma_{0}(u) - nk \nabla \sigma_{x}(u') = f \quad \text{in } \Omega,
\right.
\left. u \in H^{1}_{0}(\Omega; \mathbb{R}^3),
\right.
\end{align*}$$

which corresponds to the stationary version of the limit problem obtained in [11, equation (3.18)].

**Remark 3.6 (some applications).** (i) Our result can be applied to various problems of homogenization with high contrast which do not fall within the scope of [11]. As an example, let us fix two small parameters $\varepsilon$ and $r_{\varepsilon}$ such that $r_{\varepsilon} \ll \varepsilon$, and consider a two-phase $\varepsilon$-periodic composite comprising an alternation of possibly very soft elastic layers of thickness $r_{\varepsilon}$ and Lamé coefficients of order $\frac{1}{\varepsilon}$, with stiffer layers of thickness of order $\varepsilon$ and Lamé coefficients of order 1. More precisely, let us assume that

$$\begin{align*}
\mu_{\varepsilon} &= \mu_{0}1_{(0,L)\setminus C_{\varepsilon}} + \frac{\varepsilon}{\mu_{1}}1_{C_{\varepsilon}}, \\
\lambda_{\varepsilon} &= l\mu_{\varepsilon}, \\
C_{\varepsilon} &= \bigcup_{i \in \mathbb{Z}}(\varepsilon i + r_{\varepsilon}I).
\end{align*}$$

Then the assumptions and convergences (15) hold with $m = \mu_{0}L^1$ and $\nu = \left(\frac{1}{\mu_{0}} + \frac{1}{\mu_{1}}\right)L^1$. By (16) and (19), we have $A_{\varepsilon} = A_{m} = \emptyset$ and $BD^{0,m}_{\nu}(\Omega) = H^{1}_{0}(\Omega; \mathbb{R}^3)$, and the limit problem as $\varepsilon \to 0$, deduced from (26), takes the form

$$\begin{align*}
\left\{ - \nabla e(u) = f \quad \text{in } \Omega, \\
\sigma(u) = \left(\frac{\mu_{0}}{\mu_{0} + \mu_{1}}a^{\perp} + \mu_{0}a^{\parallel}\right)e(u),
\right.
\end{align*}$$

where $a^{\perp}$ and $a^{\parallel}$ are defined by (22).

(ii) Besides homogenization, our result can be applied to various singular perturbation problems. By way of illustration, let us consider the case of an elastic homogeneous isotropic body reinforced by a single stiff layer of thickness $\varepsilon$ and Lamé coefficients of order $\frac{1}{\varepsilon^2}$. More precisely, let us assume that the Lamé coefficients take the form

$$\begin{align*}
\mu_{\varepsilon} &= \mu_{0}1_{(0,L)\setminus C_{\varepsilon}} + \frac{\varepsilon}{\mu_{1}}1_{C_{\varepsilon}}, \\
C_{\varepsilon} &= \left(\frac{L}{2} - \varepsilon, \frac{L}{2} + \frac{\varepsilon}{2}\right), \\
\lambda_{\varepsilon} &= l\mu_{\varepsilon}.
\end{align*}$$
Under these hypotheses, the assumptions and convergences (15) hold with \( m = \mu_0 \mathcal{L}^1 + \mu_1 \delta_L / 2 \) and \( \nu = \frac{1}{\mu_0} \mathcal{L}^1 \). By (16) and (19), we have \( A_\nu = \emptyset, A_m = \{ L/2 \} \), and

\[
BD_0^{\nu,m}(\Omega) = \{ \varphi \in H^1_0(\Omega; \mathbb{R}^3), \ \varphi^{\ast}(L/2, \cdot) \in H^1_0(\Omega'), \ \forall \alpha \in \{2,3\} \}.
\]

Setting

\[
\sigma_0(u) = l \mu_0 \text{tr}(e(u)) + 2 \mu_0 e(u),
\]

\[
(42)
\]

\[
\sigma'(u^\ast) = \frac{2 l}{1 + 2} \mu_1 \text{tr}(e_x^{\ast}((u^\ast)^\prime)) I' + 2 \mu_1 e_x^{\ast}((u^\ast)^\prime), \quad I' := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

the limit problem as \( \varepsilon \to 0 \), deduced from (26), takes the form

\[
\begin{cases}
- \text{div} \sigma_0(u) = f & \text{in } \Omega \setminus \Sigma_{L/2}, \\
(\sigma_0(u)e_1)^\ast - (\sigma_0(u)e_1)^+ - \text{div}_x \sigma_1^{\ast}(u^\ast)^\prime) = 0 & \text{on } \Sigma_{L/2}, \\
u \in H^1_0(\Omega; \mathbb{R}^3), \quad u^\ast(L/2, \cdot) \in H^1_0(\Omega') (\alpha \in \{2,3\}).
\end{cases}
\]

(iii) Assume now that the latter single layer is filled by a soft (instead of stiff) material of Lamé coefficients of order \( \varepsilon \). More precisely, assume that \( \mu_\varepsilon \) is defined by substituting \( \varepsilon \mu_1 \) for \( \frac{1}{2} \mu_1 \) in (41). Then the assumptions and convergences (15) hold with \( m = \mu_0 \mathcal{L}^1 \) and \( \nu = \frac{1}{\mu_0} \mathcal{L}^1 + \frac{1}{\mu_1} \delta_L / 2 \). In this case, by (16) and (19), we have \( A_\nu = \{ L/2 \}, A_m = \emptyset \), and

\[
BD_0^{\nu,m}(\Omega) = \{ \varphi \in H^1(\Omega \setminus \Sigma_{L/2}; \mathbb{R}^3), \ \varphi = 0 \text{ on } \partial \Omega \}.
\]

By (26), the limit problem as \( \varepsilon \to 0 \) takes the form

\[
\begin{cases}
- \text{div} \sigma_0(u) = f & \text{in } \Omega \setminus \Sigma_{L/2}, \\
\mu_1 A(u^+ - u^-) = (\sigma_0(u)e_1)^\ast - (\sigma_0(u)e_1)^+ & \text{on } \Sigma_{L/2}, \\
u \in H^1(\Omega \setminus \Sigma_{L/2}; \mathbb{R}^3), \quad u = 0 \text{ on } \partial \Omega,
\end{cases}
\]

where \( A \) (resp., \( \sigma_0(u) \)) is defined by (25) (resp., (42)).

Remark 3.7. Assumption (16) is needed in the proofs of Lemma 4.6 and (100). This assumption is equivalent to (see [26, Lemma 6.2, p. 300])

\[
\forall \eta > 0, \quad \exists \delta > 0, \quad \exists \varepsilon_0 > 0, \quad \forall \varepsilon < \varepsilon_0,
\]

\[
\int_{\{(s_1,t_1) \in (0,L)^2, \ |s_1-t_1| < \delta \}} \mu_\varepsilon^{-1}(s_1) \mu_\varepsilon(s_1) ds_1 dt_1 < \varepsilon.
\]

When \( \nu \) and \( m \) do not satisfy (16), the effective problem depends not only on the couple \((\nu, m)\) but also on the choice of the sequence \((\mu_\varepsilon)\) satisfying (15). By way of illustration, let us choose two sequences of positive reals \((r_\varepsilon^{(1)}), (r_\varepsilon^{(2)})\) such that \( r_\varepsilon^{(1)} \ll r_\varepsilon^{(2)} \ll 1 \). Set \( I_{1\varepsilon} := \left( \frac{L}{2} - r_\varepsilon^{(1)}, \frac{L}{2} + r_\varepsilon^{(1)} \right) \) and \( I_{2\varepsilon} := \left( \frac{L}{2} - r_\varepsilon^{(2)}, \frac{L}{2} + r_\varepsilon^{(2)} \right) \), fix \( \zeta \in \{-1,1\} \), and consider the sequence \((\mu_\varepsilon)\) defined by

\[
\mu_\varepsilon := \mathbb{1}_{(0,L) \setminus I_{2\varepsilon}} + (r_\varepsilon^{(2)})^\zeta \mathbb{1}_{I_{2\varepsilon}} + (r_\varepsilon^{(1)})^{-\zeta} \mathbb{1}_{I_{1\varepsilon}}.
\]
The convergences (15) are satisfied with \( \nu = m = \delta \frac{1}{2} + L^1 \). By adapting to the framework of elasticity the argument developed in [10, Chapter 4] in the context of the heat equation, one can prove that under these assumptions, the solution \( u \) to (14) strongly converges in \( L^1(\Omega; \mathbb{R}^3) \) to the unique solution to

\[
(P^{(C)}) : \quad \inf \left\{ F^{(C)}(\varphi) - \int_{\Omega} f : \varphi dx, \quad \varphi \in D \right\},
\]

(46)

\( D := \left\{ \varphi \in H^1(\Omega \setminus \Sigma_{L/2}), \varphi = 0 \text{ on } \partial \Omega, \quad (\varphi')^+, (\varphi')^- \in H^1_0(\Sigma_\frac{1}{2}; \mathbb{R}^3) \right\} \).

If \( \zeta = -1 \), the effective energy is given by

\[
F^{(-1)}(\varphi) = \frac{1}{2} \int_{\Omega \setminus \Sigma_{L/2}} \sigma(\varphi) : e(\varphi) dx + \frac{1}{2} \int_{\Sigma_{L/2}} |\varphi^+_1 - \varphi^-_1|^2 dH^2 + \frac{1}{2} \int_{\Sigma_{L/2}} \sigma(\varphi^-) : e(\varphi^-) dH^2 + \frac{1}{2} \int_{\Sigma_{L/2}} \sigma(\varphi^+) : e(\varphi^+) dH^2 + \frac{1}{2} \int_{\Sigma_{L/2}} (|\varphi^+| - |\varphi^-|)^2 dH^2.
\]

If \( \zeta = 1 \), the effective energy is the nonlocal functional defined by

\[
F^{(1)}(\varphi) = \inf_{\nu \in H^1_0(\Sigma_{L/2}; \mathbb{R}^3)} \Phi(\varphi, \nu'),
\]

where

\[
\Phi(\varphi, \nu') := \frac{1}{2} \int_{\Omega \setminus \Sigma_{L/2}} \sigma(\varphi) : e(\varphi) dx + \frac{1}{2} \int_{\Sigma_{L/2}} |\varphi^+_1 - \varphi^-_1|^2 dH^2 + \frac{1}{2} \int_{\Sigma_{L/2}} \sigma(\varphi^-) : e(\varphi^-) dH^2 + \frac{1}{2} \int_{\Sigma_{L/2}} \sigma(\varphi^+) : e(\varphi^+) dH^2 + \frac{1}{2} \int_{\Sigma_{L/2}} |\nu' - (\varphi')^+ + (\varphi')^-|^2 dH^2.
\]

Substituting \( \frac{(\varphi')^++(\varphi')^-}{2} \) for \( \nu' \) in (47) and applying the two-dimensional Korn inequality in \( H^1_0(\Sigma_{L/2}; \mathbb{R}^3) \), we find

\[
F^{(-1)}(\varphi) = \phi \left( \varphi, \frac{(\varphi')^++(\varphi')^-}{2} \right) + \frac{1}{8} \int_{\Sigma_{L/2}} \sigma(\varphi') : e(\varphi') dH^2 \geq \phi \left( \varphi, \frac{(\varphi')^++(\varphi')^-}{2} \right) + C \int_{\Sigma_{L/2}} \left| \frac{(\varphi')^+ - (\varphi')^-}{2} \right|^2 dH^2.
\]

Therefore, by (47), \( F^{(-1)}(\varphi) \geq F^{(1)}(\varphi) \), and the equality \( F^{(-1)}(\varphi) = F^{(1)}(\varphi) \) can hold only if

1. \( (\varphi')^+ = (\varphi')^- \) on \( \Sigma_{L/2} \), which means that \( \varphi^*(L/2, x') = (\varphi')^+(L/2, x') = (\varphi')^-(L/2, x') \);
2. \( \nu' = \varphi^*(L/2, x') \) is the solution to the infimum problem (47), which implies that \( \varphi^{*+} = (\varphi')^+ = (\varphi')^- = 0 \) in \( \Sigma_{L/2} \).

Such an occurrence does not seem likely, in general, for the solution \( \varphi \) to (46); for instance, if we choose \( f = e_2 \) in (46), we intuitively expect that projections \( (\varphi')^+(L/2, x'), (\varphi')^-(L/2, x') \) of the traces on \( \Sigma_{L/2} \) of the solution \( \varphi \) to (46) do not
vanish. Indeed, when (16) is not satisfied, one can prove the existence of infinitely many different limit problems associated to some sequence \( (\mu_\epsilon) \) satisfying (15).

**Remark 3.8.** If \( \nu(\{0\}) > 0 \), the effective displacement may fail to vanish on \( \Sigma_0 \), and the following concentration of elastic energy may appear on \( \Sigma_0 \):

\[
\frac{1}{2} \nu(\{0\})^{-1} \int_{\Sigma_0} u^+ \cdot A u^+ dH^2.
\]

The extra term (48) is obtained by substituting \((0,0)\) for \((t,u^-)\) in (1.3). A similar contribution emerges on \( \Sigma_L \) if \( \nu(\{L\}) > 0 \). This phenomenon is related to the fact that the trace application is not weakly* continuous on \( BD(\Omega) \).

**Remark 3.9.** Our method applies to the study of second order elliptic systems of PDEs of the type

\[
(\text{P}_\epsilon): -\text{div}(\mu_\epsilon C \nabla u_\epsilon) = f \quad \text{in} \quad \Omega, \quad u_\epsilon \in H^1_0(\Omega; \mathbb{R}^n), \quad f \in L^\infty(\Omega; \mathbb{R}^n),
\]

where \( \Omega := (0, L) \times \Omega' \) is a cylindrical domain in \( \mathbb{R}^d \) and \( C \) is a second order tensor on \( \mathbb{R}^{n+d} \) satisfying the following assumptions of symmetry and ellipticity:

\[
\begin{align*}
C_{ijpq} &= C_{pqij} \quad \forall \ ((i,j),(p,q)) \in (\mathbb{R}^n \times \mathbb{R}^d)^2, \\
C \Xi : \Xi &\geq c|\Xi|^2 \quad \forall \ \Xi \in \mathbb{R}^{n \times d} \quad \text{for some} \ c > 0.
\end{align*}
\]

We suppose that

\[
T := \sum_{i,p=1}^n C_{i1p1} e_i \otimes e_p \quad \text{is invertible.}
\]

We denote by \( BV(\Omega; \mathbb{R}^n) \) the space of \( \mathbb{R}^n \)-valued functions on \( \Omega \) with bounded variation, that is,

\[
BV(\Omega; \mathbb{R}^n) := \{ \varphi \in L^1(\Omega; \mathbb{R}^n) : D\varphi \in \mathcal{M}(\Omega; \mathbb{R}^{n+d}) \}.
\]

Under these assumptions, the solution to (49) weakly* converges in \( BV(\Omega; \mathbb{R}^n) \) to the unique solution to the problem

\[
\min_{u \in BV^{\nu,m}_0(\Omega)} \frac{1}{2} a(u, u) - \int_{\Omega} f \cdot u dx,
\]

where \( BV^{\nu,m}_0(\Omega) \) is the Hilbert space defined by

\[
BV^{\nu,m}_0(\Omega) := \left\{ \varphi \in BV(\Omega; \mathbb{R}^n) : \begin{array}{l}
D\varphi \ll \nu \otimes \mathcal{L}^{d-1}, \\
\varphi = 0 \ \text{on} \ \partial\Omega
\end{array} \right\},
\]

and, setting

\[
\nabla_x \varphi := \sum_{i=1}^n \sum_{a=2}^d \frac{\partial \varphi_i}{\partial x_a} e_i \otimes e_a,
\]
with dense and compact embedding, let 
\( f \in BV(\Omega) \) and deduce from Proposition 3.10 that under the assumption (15), if 
(49) solutions to 
\[
\text{is coercive and continuous on } \Omega; \mathbb{R}^n
\]
under the assumptions (57) the symmetric bilinear form \( a(\cdot, \cdot) \) defined by (56) is coercive and continuous on \( BV^{\nu,m}_0(\Omega) \), and the sequence \( (u_\varepsilon) \) of the solutions to (49) weakly* converges in \( BV(\Omega; \mathbb{R}^n) \) to the unique solution \( u \) to (53).

The proof of Proposition 3.10 is sketched in section 6.4.

Remark 3.11. The particular case of the heat equation in a three-dimensional domain corresponds to the choice \((n, d) = (1, 3)\) in (49). Setting \( A_{1q} := C_{1j1q} \), we deduce from Proposition 3.10 that under the assumption (15), if \( A \) is positive definite and \( A_{11} \neq 0 \) (see (51)), the solution \( u_\varepsilon \) to
(58) \((P_\varepsilon) : -\text{div}(\mu_\varepsilon A \nabla u_\varepsilon) = f \quad \text{in } \Omega, \quad u_\varepsilon \in H^1_0(\Omega), \quad f \in L^\infty(\Omega),\)
weakly* converges in \( BV(\Omega; \mathbb{R}) \) to the unique solution to
\[
\min_{u \in BV^{\nu,m}_0(\Omega)} \frac{1}{2} a(u, u) - \int_{\Omega} f u dx,
\]
where \( a \) is defined on \( BV^{\nu,m}_0(\Omega)^2 \) by
\[
a(u, \varphi) := \frac{1}{2} \int_{\Omega} A^\perp \frac{D\varphi}{\nu \varphi} : \frac{D\varphi}{\nu \varphi} d\nu + \frac{1}{2} \int_{\Omega} |\nabla\varphi(u^*)| \cdot |\nabla\varphi(\varphi^*)| dm \otimes \mathcal{L}^2
\]
in terms of \( A^\perp, A^\parallel \) given by
\[
A^\perp_{ij} := \frac{A_{ij} + A_{ji}}{A_{11}}, \quad A^\parallel_{ij} := \left( \frac{A_{ij} + A_{ji}}{A_{11}} + A_{ij} \right) (1 - \delta_{j1})(1 - \delta_{1j}).
\]

Linear diffusion problems in stratified media with high contrast have also been studied in [25, 26, 27, 28, 30, 31, 32, 33, 35].

Remark 3.12. Let \( X, Y \) be separable reflexive Banach spaces such that \( X \subset Y \) with dense and compact embedding, let \( f : [0, L] \times X \to [0, +\infty), g : [0, L] \times Y \to [0, +\infty) \) be convex mappings with respect to the second variable with growth conditions of order strictly larger than 1, and let \( (a_\varepsilon), (b_\varepsilon) \) be sequences in \( L^\infty(0, L) \) such that \( \frac{1}{a_\varepsilon} \nabla \nu \) and \( b_\varepsilon \nabla \nu \) weakly* in \( \mathcal{M}([0, L]) \) for some couple \((\nu, m)\) satisfying (16), (17). Denoting by \( u' \) the distributional derivative of \( u \), we set \( W^{1,1}(0, L; Y, X) := \{u \in L^1(0, L; Y), u' \in L^1(0, L; X)\} \) and \( BV(0, L; Y, X) := \{u \in L^1(0, L; Y), u' \in \mathcal{M}(0, L; X)\} \), where \( \mathcal{M}(0, L; X) \) is the set of \( X \)-valued measures on \((0, L)\) with bounded

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
total variation. Bouchitté and Picard have established in [17] the $\Gamma$-convergence (see [24]) with respect to the strong topology of $L^1(0, L; X)$ of the sequence of functionals

$$F_\varepsilon := u \in L^1(0, L; X) \rightarrow \begin{cases} \int_0^L \frac{1}{a_\varepsilon} f(t, a_\varepsilon u'_\varepsilon)dt + \int_0^L b_\varepsilon G(t, u)dt \\ + \infty \end{cases}$$

if $u_\varepsilon \in W^{1,1}(0, L; Y, X)$,

otherwise,

to the functional

$$F := u \in L^1(0, L; X) \rightarrow \begin{cases} \int_0^L f(t, \frac{w}{\varepsilon})d\nu + \int_0^L G(t, u')dm \\ + \infty \end{cases}$$

if $u \in BV(0, L; Y, X)$ and $u' \ll \nu$,

otherwise.

As an application, we set $X = L^2(\Omega)$, $Y = H^1_0(\Omega)$, $f(t, u) = |u|^3_X$, $G(t, u) = |u|^3_Y$, and

$$A_\varepsilon := \begin{pmatrix} a_\varepsilon & 0 & 0 \\ 0 & b_\varepsilon & 0 \\ 0 & 0 & b_\varepsilon \end{pmatrix}$$

to deduce the convergence of the solution to $-\text{div} A_\varepsilon \nabla u_\varepsilon = f$, $u_\varepsilon \in H^1_0(\Omega)$, to the solution to $\min_{BV_{\varepsilon^2-m}(\Omega)} F(u) - \int f u dx$, where

$$F(u) := \frac{1}{2} \int_\Omega \left| \frac{D u}{\varepsilon} \right|^2 d\nu \otimes L^2 + \frac{3}{2} \int_\Omega |\nabla u'_\varepsilon|^2 dm \otimes L^2.$$ 

Unlike ours, this approach does not apply to nondiagonal conductivity matrices.

**Remark 3.13.** When $(\mu_\varepsilon)$ and $(\mu_\varepsilon^{-1})$ are uniformly bounded in $L^\infty(0, L)$, the solution $u_\varepsilon$ to (14) weakly converges, up to a subsequence, to $u \in H^1_0(\Omega; \mathbb{R}^3)$, and the sequence $\sigma_\varepsilon := \sigma(u_\varepsilon)$ weakly converges in $L^2(\Omega; \mathbb{S}^3)$ to some $\sigma$ satisfying $-\text{div} \sigma = f$ in $\Omega$. The constitutive relation between $\sigma$ and $\varepsilon := e(u)$ can be deduced from classical layering arguments (see the early works of Murat and Tartar [42, 51], [52, p. 140]; see also [29]). These arguments rest on the so-called good behavior of some components of $\sigma_\varepsilon$ and $e_\varepsilon := e(u_\varepsilon)$, which do not oscillate in $x_1$ in the following sense: a sequence $(g_\varepsilon)$ that weakly converges in $L^2(\Omega)$ to $g$ is said to not oscillate in $x_1$ if, for any sequence $h_\varepsilon(x_1)$ depending only on $x_1$ and weakly converging in $L^2(0, L)$ to $h$, the sequence $(g_\varepsilon h_\varepsilon)$ weakly* converges in $M(\Omega)$ to $gh$. It turns out that $(\sigma_\varepsilon^{(i)})_{\varepsilon \in \{1,2,3\}}$ and $(e_{\varepsilon \alpha \beta})_{\alpha, \beta \in \{1,2,3\}}$ are “good” components of $\sigma_\varepsilon$ and $e_\varepsilon$: denoting by $\sigma_\varepsilon^{(i)}$ the $i$th component of $\sigma_\varepsilon$ and noticing that $-\text{div} \sigma_\varepsilon^{(i)} = f_i$ and $\text{curl} (h_\varepsilon(x_1) e_1) = 0$, we see by the div-curl lemma (see [52, Lemma 7.2]) that the sequence $\sigma_\varepsilon^{(i)} h_\varepsilon(x_1) e_1 = \sigma(x_1) h(x_1)$ weakly* converges in $M(\Omega)$ to $\sigma h$. Likewise, since $\text{curl} \nabla u_\varepsilon e_1 = \varepsilon$ and $\text{div}(h_\varepsilon(x_1) e_1) = 0$, the sequence $\nabla u_\varepsilon e_1 = \sigma_\varepsilon h_\varepsilon(x_1)$ weakly* converges in $M(\Omega)$ to $\sigma h$.

The original idea of Murat and Tartar consists of transforming the constitutive equation $\sigma_\varepsilon = a_\varepsilon(x_1) e_\varepsilon$ into an equation of the form $O_\varepsilon = b_\varepsilon(x_1) G_\varepsilon$, where $b_\varepsilon = \phi(a_\varepsilon)$ for some suitable fourth order tensors valued (nonlinear) mapping $\phi$, and $G_\varepsilon$ (resp., $O_\varepsilon$) is the matrix of the “good” components (resp., of the remaining so-called oscillatory
ones), namely,

\[ G_\varepsilon := \begin{pmatrix} \sigma_{e11} & \sigma_{e12} & \sigma_{e13} \\ \sigma_{e21} & \sigma_{e22} & \sigma_{e23} \\ \sigma_{e31} & \sigma_{e32} & \sigma_{e33} \end{pmatrix}, \quad O_\varepsilon := \begin{pmatrix} e_{e11} & e_{e12} & e_{e13} \\ e_{e21} & e_{e22} & e_{e23} \\ e_{e31} & e_{e32} & e_{e33} \end{pmatrix}. \]

Notice that \( \sigma_\varepsilon : e_\varepsilon = O_\varepsilon : G_\varepsilon = b_\varepsilon G_\varepsilon : G_\varepsilon \). It turns out that up to a subsequence, \((b_\varepsilon(x_1))\) weakly converges to some \(b\) in \(L^2\), and hence we can pass to the limit in the equation \(O_\varepsilon = b_\varepsilon(x_1)G_\varepsilon\) in the weak* topology of \(M(\Omega; S^3)\). We obtain the equation

\[ O = bG \quad \text{in} \; \Omega; \quad G := \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}, \quad O := \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix}, \]

which is equivalent to the effective constitutive equation

\[ \sigma = ae \quad \text{in} \; \Omega, \quad a := \phi^{-1}(b). \]

The limit process yielding the effective elasticity tensor \(a = \phi^{-1}(\lim_{L^2-\text{weak}} \phi(\sigma_\varepsilon))\) is called the 1*-convergence of the sequence \((\sigma_\varepsilon)\) (see [51, p. 14]). Our proof is connected to these classical layering arguments insofar as, in order to pass to the limit as \(\varepsilon \to 0\) in the variational formulation (133), we write \(\sigma_\varepsilon(u_\varepsilon) : e(\varphi_\varepsilon) = b_\varepsilon G_\varepsilon(u_\varepsilon) : G_\varepsilon(\varphi_\varepsilon)\) (see (141)) and establish that \(G_\varepsilon(\varphi_\varepsilon)\) has "good" behavior with respect to some suitable notion of strong convergence (see (60), (140)).

4. Technical preliminaries and a priori estimates. This section is dedicated, essentially, to the analysis of the asymptotic behavior of the solution \((u_\varepsilon)\) to (14) and its stress \(\sigma_\varepsilon(u_\varepsilon)\) in the limit \(\varepsilon \to 0\). The following notion of convergence is a crucial part of this study.

DEFINITION 4.1. Let \(\theta_\varepsilon, \theta\) be positive Radon measures on a compact set \(K \subset \mathbb{R}^N\), and let \(f_\varepsilon, f\) be Borel functions on \(K\). We say that \((f_\varepsilon)\) weakly converges to \(f\) with respect to the pair \((\theta_\varepsilon, \theta)\) if

\[
\sup_{\varepsilon} \int_K |f_\varepsilon|^2 d\theta_\varepsilon < \infty, \quad f \in L^2_\theta(K),
\]

\[
\theta_\varepsilon \swarrow \theta \quad \text{and} \quad f_\varepsilon \theta_\varepsilon \rightharpoonup f \theta \quad \text{weakly* in} \; M(K)
\]

(notation: \(f_\varepsilon \rightharpoonup_{\theta_\varepsilon} f\)).

We say that \((f_\varepsilon)\) strongly converges to \(f\) with respect to the pair \((\theta_\varepsilon, \theta)\) if

\[
f_\varepsilon \frac{\theta_\varepsilon}{\theta} f \quad \text{and} \quad \limsup_{\varepsilon \to 0} \int_K |f_\varepsilon|^2 d\theta_\varepsilon \leq \int_K |f|^2 d\theta \quad \text{(notation:} \; f_\varepsilon \rightharpoonup_{\theta_\varepsilon} f). \]

We now present the main statement of the section. For notational simplicity, the measures \((\nu_\varepsilon \otimes L^2)_{|\mathbb{P}}\) and \((m_\varepsilon \otimes L^2)_{|\mathbb{P}}\) are denoted by \(\nu_\varepsilon \otimes L^2\) and \(m_\varepsilon \otimes L^2\). We set (see (11))

\[
\sigma^v(\varphi) := l \cdot \text{tr} \left( \frac{\overline{E}_\varepsilon}{\nu_\varepsilon \otimes L^2} \right) I + 2 \frac{\overline{E}_\varepsilon}{\nu_\varepsilon \otimes L^2}.
\]
Proposition 4.2. Let \((u_\varepsilon)\) be the sequence of solutions to (14). Then \(u_\varepsilon\) is bounded in BD(\(\Omega\)) and

\[
\sup_{\varepsilon>0} \int_{\Omega} |u_\varepsilon|^2 \, dm_\varepsilon + \int_{\Omega} |u_\varepsilon| \, dx + \int_{\Omega} \mu_\varepsilon |e(u_\varepsilon)|^2 \, dx < \infty.
\]

Up to a subsequence, there exists \(u\) such that

\[
u_\varepsilon \rightharpoonup u \text{ weakly* in } BD(\Omega), \quad E\nu_\varepsilon \rightharpoonup E\mu \text{ weakly* in } M(\bar{\Omega}, S^3),
\]

\[
\mu_\varepsilon e(u_\varepsilon) \rightharpoonup_{\nu_{\varepsilon},L^2} e_\varepsilon^*(u^*) \quad \mu_\varepsilon \sigma_\varepsilon(u_\varepsilon) \rightharpoonup_{\nu_{\varepsilon},L^2} \sigma^\nu(u),
\]

Before presenting the proof of Proposition 4.2, we establish some auxiliary results. The next lemma states some fundamental properties of convergence with respect to the pair \((\theta_\varepsilon, \theta)\), proved in [36, Theorem 4.4.2] in a more general context.

Lemma 4.3. Let \((\theta_\varepsilon)\) be a sequence of positive Radon measures on a compact set \(K \subset \mathbb{R}^N\) weakly* converging in \(M(K)\) to some positive Radon measure \(\theta\). Then

(i) any sequence \((f_\varepsilon)\) of Borel functions on \(K\) such that

\[
\sup_{\varepsilon} \int_K |f_\varepsilon|^2 \, d\theta_\varepsilon < \infty
\]

has a weakly converging subsequence with respect to the pair \((\theta_\varepsilon, \theta)\);

(ii) if \(f_\varepsilon \xrightarrow{\theta_\varepsilon,\theta} f\) (resp., \(f_\varepsilon \xrightarrow{\theta_\varepsilon,\theta} f\)), then

\[
\lim_{\varepsilon \to 0} \int_K f^2 \, d\theta_\varepsilon \geq \int_K f^2 \, d\theta \quad \text{(resp., } \lim_{\varepsilon \to 0} \int_K f^2 \, d\theta_\varepsilon = \int_K f^2 \, d\theta \text{)};
\]

(iii) if \(f_\varepsilon \xrightarrow{\theta_\varepsilon,\theta} f\) and \(g_\varepsilon \xrightarrow{\theta_\varepsilon,\theta} g\), then

\[
\lim_{\varepsilon \to 0} \int_K f_\varepsilon g_\varepsilon \, d\theta_\varepsilon = \int_K fg \, d\theta.
\]

As a first application of Lemma 4.3, we obtain some relations between the measures \(\nu\), \(m\), and \(L^1_{[0,L]}\) as follows.

Lemma 4.4. Under (15), the following hold:

\[
\int_{[0,L]} \xi_\varepsilon^1 \, d\nu = \mu_\varepsilon^1 \in L^2_{[0,L]}, \quad \int_{[0,L]} \xi_\varepsilon^1 \, dm = \mu_\varepsilon^1 \in L^2_{[0,L]},
\]

\[
\int_{[0,L]} |\xi_\varepsilon^1|^2 \, d\nu \leq \mu^1(0,L), \quad \int_{[0,L]} |\xi_\varepsilon^1|^2 \, dm \leq \nu(0,L).
\]

Proof. Noticing that by (13) and (15), \(\sup_{\varepsilon} \int_{[0,L]} |\mu_\varepsilon|^2 \, d\nu = \sup_{\varepsilon} \mu_\varepsilon^1([0,L]) < \infty\) (resp., \(\sup_{\varepsilon} \int_{[0,L]} |\mu_\varepsilon|^2 \, dm = \sup_{\varepsilon} \mu_\varepsilon^1([0,L]) < \infty\), we deduce from Lemma 4.3 that the sequence \((\mu_\varepsilon^1)\) (resp., \((\mu_\varepsilon^1)\)) has a converging subsequence with respect to the pair \((\nu_\varepsilon, \nu)\) (resp., \((\nu_\varepsilon, \nu)\)), and that

\[
\mu_\varepsilon \nu_\varepsilon \xrightarrow{\theta_\varepsilon,\theta} g \nu, \quad \mu_\varepsilon^{-1} m_\varepsilon \xrightarrow{\theta_\varepsilon,\theta} h m, \quad g \in L^2_{\nu}, \quad h \in L^2_{m},
\]

\[
\int |g|^2 \, d\nu \leq \liminf_{\varepsilon \to 0} \int |\mu_\varepsilon|^2 \, d\nu, \quad \int |h|^2 \, dm \leq \liminf_{\varepsilon \to 0} \int |\mu_\varepsilon|^2 \, dm.
\]
By (13) we have \( \mu_{\varepsilon} m_{\varepsilon} = \mu_{\varepsilon}^{-1} m_{\varepsilon} = \mathcal{L}^1_{\varepsilon, [0,L]} \), \( |\mu_{\varepsilon}|^2 m_{\varepsilon} = m_{\varepsilon} \), \( |\mu_{\varepsilon}|^{-2} m_{\varepsilon} = \nu_{\varepsilon} \), and therefore \( g\nu = h m = \mathcal{L}^1_{\varepsilon, [0,L]} \), \( \mathcal{L}^1_{\varepsilon, [0,L]} \ll \nu \), \( \mathcal{L}^1_{\varepsilon, [0,L]} \ll m \), \( g = \frac{\mathcal{L}^1_{\varepsilon}}{\nu} \), \( h = \frac{\mathcal{L}^1_{\varepsilon}}{m} \), and the convergences (15) and (67) imply

\[
\int_{[0,L]} |\mathcal{L}^1_{\varepsilon}|^2 \, d\nu \leq \limsup_{\varepsilon \to 0} m_{\varepsilon}([0,L]) \leq m([0,L]),
\]

\[
\int_{[0,L]} |\mathcal{L}^1_{\varepsilon}|^2 \, dm \leq \limsup_{\varepsilon \to 0} \nu_{\varepsilon}([0,L]) \leq \nu([0,L]).
\]

Assertion (66) is proved.

The following statement is proved in [17, Lemma 3.1].

**Lemma 4.5.** Let \((b_{\varepsilon})\) be a bounded sequence in \(L^1(0,L)\) that weakly\(^*\) converges in \(\mathcal{M}([0,L])\) to some Radon measure \(\theta\) satisfying

\[
\theta(\{0\}) = \theta(\{L\}) = 0.
\]

Let \((w_{\varepsilon})\) be a bounded sequence in \(W^{1,1}(0,L)\) weakly\(^*\) converging in \(BV(0,L)\) to some \(w\). Assume that

\[
\theta(\{t\})Dw(\{t\}) = 0 \quad \forall t \in (0,L).
\]

Then

\[
\lim_{\varepsilon \to 0} \int_0^L \psi b_{\varepsilon} w_{\varepsilon} \, dx = \int_{(0,L)} \psi w^{(r)} \, d\theta = \int_{(0,L)} \psi w^{(l)} \, d\theta \quad \forall \psi \in C([0,L]),
\]

where \(w^{(r)}\) (resp., \(w^{(l)}\)) denotes the right-continuous (resp., left-continuous) representative of \(w\).

For any \(\varphi \in BD(\Omega)\), we denote by \(\gamma^{\pm}_{\Sigma_{x_1}}(\varphi)\) the trace of \(\varphi\) on both sides of \(\Sigma_{x_1}\) (see (12)). As shown in the next lemma, the mappings \(x \to \gamma^{\pm}_{\Sigma_{x_1}}(\varphi)(x)\) can be identified with the Borel fields \(\varphi^{\pm}\) defined by (5).

**Lemma 4.6.** Let \(\varphi \in BD(\Omega)\), and let \(\varphi^*, \varphi^{\pm}\) be defined by (4), (5). Then

\[
\gamma^{\pm}_{\Sigma_{x_1}}(\varphi)(x) = \varphi^{\pm}(x) = \lim_{t \to 0} \int_{B_T^{\pm}(x)} \varphi(y) \, dy \quad H^2\text{-a.e. } x \in \Sigma_{x_1} \forall x_1 \in (0,L).
\]

Moreover, we have

\[
\varphi^* = \frac{1}{2}(\varphi^+ + \varphi^-) \quad H^2\text{-a.e. } \Sigma_{x_1} \forall x_1 \in (0,L)
\]

and

\[
\varphi^*, \varphi^{\pm} \in L^1_{H^2}(\Sigma_{x_1}) \quad \forall x_1 \in (0,L).
\]

Furthermore, the following hold:

\[
\varphi^+ = \varphi^- = \varphi^* = \lim_{t \to 0} \int_{B_T^{\pm}(x)} \varphi(y) \, dy \quad H^2\text{-a.e. in } \Sigma_{x_1} \text{ if } |E\varphi|(\Sigma_{x_1}) = 0
\]

and

\[
\tilde{E}\varphi \ll \nu \otimes L^2 \implies \varphi^+ = \varphi^- = \varphi^* \quad H^2\text{-a.e. on } \Sigma_{x_1} \text{ for } m\text{-a.e. } x_1 \in (0,L).
\]
Proof. The traces of a function with bounded deformation on both sides of a \( C^1 \) hypersurface \( M \) contained in \( \Omega \) are \( H^2 \)-a.e. equal to its one side Lebesgue limits (see \([38, \text{ Trace Theorem, p. 84; Proposition 2.2, p. 91 or } 2, \text{ (ii)-(iii), p. 209}])\). Applying this to \( M = \Sigma_{x_1} \), we obtain (71). Assertion (71) ensures that for all \( x_1 \in (0, L) \), for \( H^2 \)-a.e. \( x \in \Sigma_{x_1} \), the two limits in the first line of (5) exist and are finite. When they do exist, the limit in the first line of (4) also exists, and

\[
\frac{1}{2} (\varphi^+(x) + \varphi^-(x)) = \frac{1}{2} \left( \lim_{r \to 0} \int_{B_r^+(x)} \varphi(y) \, dy + \int_{B_r^-(x)} \varphi(y) \, dy \right)
\]

\[
= \lim_{r \to 0} \int_{B_r(x)} \varphi(y) \, dy = \varphi^*(x).
\]

Assertion (72) is proved. Assertion (73) results from (71), (72), and the fact that the traces of \( \varphi \) on each side of \( \Sigma_{x_1} \) belong to \( L^1_{H^2}(\Sigma_{x_1}) \). Noticing that by (29) we have

\[
|E\varphi|_{\Sigma_{x_1}} = |(\varphi^+ - \varphi^-) \circ e_1| \, H^2|_{\Sigma_{x_1}} \quad \forall x_1 \in (0, L),
\]

we deduce from the elementary inequality

\[
|a| \leq \sqrt{2} |a \circ n| \quad \text{if} \quad ||n|| = 1
\]

that \( \varphi^+ = \varphi^- \) \( H^2 \)-a.e. in \( \Sigma_{x_1} \) whenever \( |E\varphi|(\Sigma_{x_1}) = 0 \). Assertion (74) then follows from (71) and (72). Assertion (75) is deduced from (74) by noticing that, by (16),

\[
m(A_\nu) = 0 \quad \text{and that} \quad \nu \otimes \mathcal{L}^2(\Sigma_{x_1}) = \nu(\{x_1\})\mathcal{L}^2(\Omega') = |E\varphi|(\Sigma_{x_1}) = 0 \quad \text{if} \quad x_1 \notin A_\nu \quad \text{and} \quad E\varphi \ll \nu \otimes \mathcal{L}^2.
\]

Combined with Lemma 4.5, the following lemma will be used to prove a delicate identification relation (see (100)) in the proof of Proposition 4.8.

**Lemma 4.7.** Let \( \varphi \in BD(\Omega) \) such that \( \varphi = 0 \) on \( \partial \Omega \), and let \( \varphi \in L^1(0, L; \mathbb{R}^3) \) be the Borel function defined by

\[
\varphi(x_1) := \int_{\Sigma_{x_1}} \varphi^* \, dH^2 \quad \forall x_1 \in (0, L).
\]

The following hold:

\[
\varphi \in BV(0, L; \mathbb{R}^3), \quad ||\varphi||_{L^1(0, L; \mathbb{R}^3)} \leq ||\varphi||_{L^1(\Omega)}, \quad ||\varphi||_{BV(0, L; \mathbb{R}^3)} \leq \sqrt{2} ||\varphi||_{BD(\Omega)},
\]

\[
D\varphi \ll |E\varphi|(\cdot \times \Omega'), \quad |D\varphi|(B) \leq \sqrt{2} |E\varphi|(B \times \Omega') \quad \forall B \in \mathcal{B}((0, L)),
\]

where \( \mathcal{B}((0, L)) \) denotes the Borel \( \sigma \)-algebra of \( (0, L) \). Moreover, the left-continuous representative \( \varphi^{(l)} \) (resp., right-continuous representative \( \varphi^{(r)} \)) of \( \varphi \) is given by

\[
\varphi^{(l)}(x_1) = \int_{\Sigma_{x_1}} \varphi^- \, dH^2 \quad \forall x_1 \in (0, L)
\]

\[
\varphi^{(r)}(x_1) = \int_{\Sigma_{x_1}} \varphi^+ \, dH^2 \quad \forall x_1 \in (0, L).
\]

Proof. Let \( eV(\varphi, (0, L)) \) denote the essential variation of \( \varphi \) on \( (0, L) \), that is,

\[
eV(\varphi, (a, b)) := \inf_{\mathcal{L}^1(\mathbb{N}) = 0} \sup \left\{ \sum_{i=1}^n |\varphi(t_{i+1}) - \varphi(t_i)|, \begin{array}{l} t_1, \ldots, t_n \in (a, b) \setminus \mathbb{N} \\text{where } t_1 < \cdots < t_n < b \end{array} \right\}.
\]
By [3, Proposition 3.6 and Theorem 3.27], the field $\phi$ belongs to $BV(0, L; \mathbb{R}^3)$ if and only if $\nu(\phi, (0, L)) < \infty$, and in this case $\nu(\phi, (0, L)) = |D\phi|(0, L)$. Let $a, b$ be two real numbers such that $0 \leq a < b \leq L$, $D := \{t \in (0, L), |E\phi|_{\Sigma_t} > 0\}$, and let $t_1, \ldots, t_n \in (a, b) \setminus D$ such that $0 < t_1 < \cdots < t_n < L$. By (74), (76), and Green’s formula in $BD(\Omega_t)$, where $\Omega_t := (t_i, t_{i+1}) \times \Omega'$, since $\phi = 0$ on $\partial \Omega$, we have

$$
\left| \phi(t_{i+1}) - \phi(t_i) \right| = \int_{\Sigma_{t_i}} \phi^- dH^2 - \int_{\Sigma_{t_i}} \phi^+ dH^2
$$

(81)

$$
\leq \sqrt{2} \left( \int_{\Sigma_{t_i}} \phi^- dH^2 - \int_{\Sigma_{t_i}} \phi^+ dH^2 \right) \circ e_1
$$

$$
= \sqrt{2} \int_{\partial \Omega_t} \gamma_i(\phi) \circ ndH^2 = \sqrt{2} |E\phi|_{\Sigma_t} \leq \sqrt{2} |E\phi|_{\Omega_t},
$$

where $\gamma_i(\phi)$ denotes the trace on $\partial \Omega_t$ of the restriction of $\phi$ to $\Omega_t$, and therefore,

$$
\sum_{i=1}^n \left| \phi(t_{i+1}) - \phi(t_i) \right| \leq \sum_{i=1}^n \sqrt{2} |E\phi|_{\Omega_t} \leq \sqrt{2} |E\phi| ((a, b) \times \Omega').
$$

By the arbitrary choice of $t_1, \ldots, t_n$, noticing that $D$ is at most countable and thus $L^1$-negligible, we infer that $\phi \in BV(a, b; \mathbb{R}^3)$ and

$$
|D\phi|(a, b) = \nu(\phi, (a, b)) \leq \sqrt{2} |E\phi| ((a, b) \times \Omega'),
$$

yielding, by the arbitrariness of $a, b$, the second line of (78). The first line easily follows. Since $\phi \in BV((0, L); \mathbb{R}^3)$, there exists a left-continuous (resp., right-continuous) representative $\phi^{(l)}$ (resp., $\phi^{(r)}$) of $\phi$. Let us fix $x_1 \in (0, L)$. By (81), we have

$$
\limsup_{t \to x_1^-} \int_{\Sigma_{t_i}} \phi^- dH^2 - \phi(t) = \limsup_{t \to x_1^-} \int_{\Sigma_{t_i}} \phi^- dH^2 - \int_{\Sigma_{t_i}} \phi^+ dH^2
$$

$$
\leq \limsup_{t \to x_1^-} \sqrt{2} |E\phi| ((t, x_1) \times \Omega') = 0,
$$

and therefore $\phi^{(l)}(x_1) = \int_{\Sigma_{x_1}} \phi^- dH^2$. The proof of the identity $\phi^{(r)}(x_1) = \int_{\Sigma_{x_1}} \phi^+ dH^2$ is similar.

In the next proposition, we study the asymptotic behavior of a sequence $(\phi_\varepsilon)$ satisfying the estimate

$$
\sup_{\varepsilon > 0} \int_{\Omega} |\phi_\varepsilon| dx + \int_{\Omega} \mu_\varepsilon |e(\phi_\varepsilon)| dx < \infty.
$$

This study will be applied to the sequence of the solutions to (14), and also to the sequence of test fields defined in section 6 (see Proposition 6.1), which do not necessarily vanish on $\partial \Omega$. We are led to introduce the normed space $BD^{v, m}(\Omega)$ deduced from (19) by removing the boundary conditions, namely,

$$
BD^{v, m}(\Omega) = \left\{ \phi \in BD(\Omega) \mid |E\phi|_{(0, L)} \leq L, \left( |e(\phi^*)|^2 \right)^{\frac{1}{2}} \in L^2 \right\},
$$

$$
\|\phi\|_{BD^{v, m}(\Omega)} := \int_{\Omega} |\phi| dx + \int_{\Omega} \frac{|E\phi|_{(0, L)}^2}{2} dx + \left( \int_{\Omega} |e_\varepsilon(\phi^*)|^2 dm \right)^{\frac{1}{2}}.
$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
The estimate (89) also implies that \( \varphi \) and thus the sequence (89) have
\[
\varphi \rightarrow \varphi \quad \text{strongly in } L^p(\Omega; \mathbb{R}^3) \ \forall p \in [1, \frac{3}{2}],
\]
\[
e(\varphi) L^3_{\Omega} = E \varphi \rightharpoonup \tilde{E} \varphi \quad \text{weakly* in } \mathcal{M}(\Omega; S^3),
\]
\[
e(\varphi) L^3_{\Omega} = \mathcal{E} \varphi \rightharpoonup \Upsilon \quad \text{weakly* in } \mathcal{M}(\Omega; S^3)
\]
for some \( \varphi \in BD(\Omega), \ Upsilon \in \mathcal{M}(\Omega; S^3) \). Moreover,
\[
\Upsilon = \tilde{E} \varphi,
\]
\[
E \varphi \ll \nu \otimes L^2, \quad \tilde{E} \varphi \in L^2_{\nu \otimes L^2}(\Omega; S^3),
\]
\[
\mu_e(\varphi) \nu \otimes L^2 \rightarrow \tilde{E} \varphi, \quad \sigma_e(\varphi) \nu \otimes L^2 \rightarrow \sigma(\varphi),
\]
where \( \sigma^* \) is given by (61). Assume in addition
\[
\sup_{\varepsilon > 0} \int_{\Omega} |\varphi| e^2 d m_\varepsilon \otimes L^2 < \infty;
\]
then
\[
(\varphi')' \in L^2_{m_1(0, L; H^1(\Omega'; \mathbb{R}^3))}, \quad \varphi \in BD^{\nu, m}(\Omega),
\]
\[
\varphi \rightarrow m_2 \otimes L^2, \quad e \rightarrow (\varphi', (\varphi')').
\]

Proof. By the Cauchy–Schwarz inequality and the estimates (15) and (83), we have
\[
\int_{\Omega} |\varphi| d x + \int_{\Omega} |\varphi_e| d x \leq \int_{\Omega} |\varphi| d x + \left( \int_{\Omega} \mu_e d x \right)^{\frac{1}{2}} \left( \int_{\Omega} e(\varphi_e)^2 d x \right)^{\frac{1}{2}} \leq C,
\]
and thus the sequence (\( \varphi_e \)) is bounded in \( BD(\Omega) \) and weakly* converges in \( BD(\Omega) \), up to a subsequence, to some \( \varphi \). From the compactness of the injection of \( BD(\Omega) \) into \( L^p(\Omega; \mathbb{R}^3) \) for \( p \in [1, \frac{3}{2}] \) (see [53, Theorem 2.4, p. 153]), we deduce
\[
\varphi_e \rightarrow \varphi \quad \text{strongly in } L^p(\Omega; \mathbb{R}^3) \ \forall p \in [1, \frac{3}{2}],
\]
\[
E \varphi \rightharpoonup \tilde{E} \varphi \quad \text{weakly* in } \mathcal{M}(\Omega; S^3).
\]
The estimate (89) also implies that \( e(\varphi_e) L^3_{\Omega} \) is bounded in \( \mathcal{M}(\Omega; S^3) \), and hence the following convergence holds, up to a subsequence, for some \( \Upsilon \in \mathcal{M}(\Omega; S^3) \):
\[
e(\varphi_e) L^3_{\Omega} = \mathcal{E} \varphi \rightharpoonup \Upsilon \quad \text{weakly* in } \mathcal{M}(\Omega; S^3).
\]
By testing the convergences (90) (second line) and (91) with some arbitrary field \( \Psi \in D(\Omega; S^3) \), we deduce that the following equation holds in \( \mathcal{M}(\Omega; S^3) \):
\[
\Upsilon_{\Omega} = E \varphi.
\]
By (13) and (83), we have

\[ \sup_{\varepsilon > 0} \int_{\Omega} |\mu_{\varepsilon}(\varphi_{\varepsilon})^2 \otimes L^2 = \sup_{\varepsilon > 0} \int_{\Omega} |\mu_{\varepsilon}(\varphi_{\varepsilon})|^2 dx < \infty. \]

(93)

Since the sequence \((\nu_{\varepsilon} \otimes L^2)\) weakly* converges to \(\nu \otimes L^2\) in \(M(\Omega)\) (see (15)), we deduce from Lemma 4.3 and (61) that, up to a subsequence,

\[ \mu_{\varepsilon}(\varphi_{\varepsilon})^2 \otimes L^2, \quad \sigma_{\varepsilon}(\varphi_{\varepsilon}) \nu_{\varepsilon} \otimes L^2 \leq \text{tr}(\Xi) I + 2\Xi \]

(94)

for some

\[ \Xi \in L^2_{\nu \otimes L^2}(\Omega; S^3). \]

The first convergence in (94) implies, by Definition 4.1, that

\[ e(\varphi_{\varepsilon})L^2_{\|I\|} = \tilde{E}\varphi_{\varepsilon} \prec \Xi \nu \otimes L^2 \quad \text{weakly* in } M(\Omega; S^3). \]

(95)

Taking (91) into account, we infer that the following equation holds in \(M(\Omega; \mathbb{R}^3)\):

\[ \Upsilon = \Xi \nu \otimes L^2. \]

(96)

Noticing that by (17) we have \(\nu \otimes L^2(\partial \Omega) = 0\), we infer from (97) that \(\Upsilon(\partial \Omega) = 0\), and then from (11) and (92) that

\[ \Upsilon = \Upsilon_{|\partial \Omega} + \Upsilon_{|\Omega} = \tilde{E}\varphi. \]

(98)

By (90), (91), (97), and (98), the assertions (85) and (86) are proved.

Let us now prove (88). By (15), the sequence \((m_{\varepsilon} \otimes L^2)\) weakly* converges in \(M(\Omega)\) to \(m \otimes L^2\), and by (13), (87), and (93) we have

\[ \sup_{\varepsilon > 0} \int_{\Omega} |\varphi_{\varepsilon}|^2 + |e_{\varepsilon}(\varphi_{\varepsilon})|^2 dm_{\varepsilon} \otimes L^2 < +\infty. \]

(99)

Applying Lemma 4.3 we infer, up to a subsequence, the following convergences:

\[ \varphi_{\varepsilon}^m \otimes L^2, m \otimes L^2 \rightarrow h', \quad \mu_{\varepsilon}(\varphi_{\varepsilon}) \rightarrow h' m \otimes L^2 \quad \text{weakly* in } M(\Omega; \mathbb{R}^3), \]

\[ e_{\varepsilon}(\varphi_{\varepsilon}) \rightarrow m \otimes L^2, m \otimes L^2 \rightarrow \Gamma m \otimes L^2 \quad \text{weakly* in } M(\Omega; S^3) \]

for some \(h' \in L^2_{m \otimes L^2}(\Omega; \mathbb{R}^3), \Gamma \in L^2_{m \otimes L^2}(\Omega; S^3)\). The proof of (88) (and of Proposition 4.8) is achieved provided we show that

\[ h' = (\varphi^*)' \quad m \otimes L^2\text{-a.e. in } \Omega, \]

(100)

\[ (\varphi^*)' \in L^2_{m}(0, L; H^1(\Omega'; \mathbb{R}^3)), \quad \Gamma = e_{\varepsilon}'((\varphi^*)'), \quad m \otimes L^2\text{-a.e. in } \Omega. \]

(101)

Proof of (100). Let us fix \(\psi \in C(\Omega)\). By (85), \((\psi \varphi_{\varepsilon})\) weakly* converges in \(BD(\Omega)\) to \(\psi \varphi\), and hence by the estimates (78) established in Lemma 4.7, the sequence \((\psi \varphi_{\varepsilon})\) defined by (77) weakly* converges in \(BV(0, L; \mathbb{R}^3)\) to \(\psi \varphi\). By (66), (78), and (88) we have

\[ |D\psi\varphi| \ll |E(\psi \varphi)|(\cdot \times \Omega') = |\psi E(\varphi) + \nabla \psi \otimes \varphi L^2|(\cdot \times \Omega') \ll \nu, \]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
and therefore, by (16) and (17), the assumptions of Lemma 4.5 are satisfied by $(h, w) := (\mu_x, \psi \varphi_e)$ and $(\theta, w) := (m, \psi \varphi)$. Taking into account (75), (79), and (99) and applying Fubini’s theorem, we deduce

$$
\int_\Omega \psi' dm \otimes L^2 = \lim_{\varepsilon \to 0} \int_\Omega \mu_x \psi' \varphi_e dx = \lim_{\varepsilon \to 0} \int_\Omega \mu_x \psi(\varphi^*)' \varphi_e dx = \lim_{\varepsilon \to 0} \int_0^L \mu_x \bar{\psi} \varphi_e dx_1
$$

where

$$
(102)
$$

$$
\psi
$$

By the arbitrary choice of $\psi$, assertion (100) is proved.

**Proof of (101).** Let us fix $\Psi \in D(\Omega; S^3)$. By (99) and (100), we have

$$
\int_\Omega \Gamma : \Psi dm \otimes L^2 = \lim_{\varepsilon \to 0} \int_\Omega \mu_x e_x'(\varphi_e) : \Psi dx = \lim_{\varepsilon \to 0} \int_\Omega \mu_x \varphi_e' \cdot \text{div}_x \Psi dx
$$

(102)

$$
= - \int_\Omega (\varphi^*)' \cdot \text{div}_x \Psi dm \otimes L^2,
$$

where $\text{div}_x \Psi := \sum_{\alpha, \beta=2}^3 \partial_{\beta} \Psi_{\alpha} \varepsilon_{\alpha}$. By the arbitrary choice of $\Psi$, we deduce that

$$
e_x' ((\varphi^*)') = \Gamma, \quad m \otimes L^2 \text{-a.e.}
$$

yielding $e_x' ((\varphi^*)') \in L^2_m(0, L; L^2(\Omega'; S^3))$. This, along with (100) and the two-dimensional second Korn inequality in $H^1(\Omega'; \mathbb{R}^2)$, implies $(\varphi^*)' \in L^2_m(0, L; H^1(\Omega'; S^3))$. Assertion (101) is proved.

We are now in a position to prove the main result of section 4.

**Proof of Proposition 4.2.** By multiplying (14) by $u_\varepsilon$ and integrating by parts over $\Omega$, we obtain

$$
\int_\Omega \sigma(\varepsilon u_\varepsilon) : e(\varepsilon u_\varepsilon) dx = \int_\Omega f \cdot u_\varepsilon dx
$$

and deduce

(103)

$$
\int_\Omega \mu_x |e(\varepsilon u_\varepsilon)|^2 dx \leq \int_\Omega \sigma(\varepsilon u_\varepsilon) : e(\varepsilon u_\varepsilon) dx \leq C ||f||_{L^\infty(\Omega; \mathbb{R}^3)} \int_\Omega |u_\varepsilon|^2 dx.
$$

Assumptions (15) and the Poincaré and Cauchy–Schwarz inequalities imply

(104)

$$
\int \|u_\varepsilon\|_1 dx \leq C \int \left| \frac{\partial(\varepsilon u_\varepsilon)}{\partial x_1} \right| dx \leq C \left( \int \frac{1}{\mu_x} dx \right)^\frac{1}{2} \left( \int \mu_x \left| \frac{\partial(\varepsilon u_\varepsilon)}{\partial x_1} \right|^2 dx \right)^\frac{1}{2}
$$

$$
\leq C \left( \int \mu_x |e(\varepsilon u_\varepsilon)|^2 dx \right)^\frac{1}{2}.
$$

By Fubini’s theorem, Poincaré’s inequality in $W^{1,1}_0(\Omega'; \mathbb{R}^2)$, assertion (15), the Cauchy–Schwarz and Jensen’s inequalities, and Korn’s inequality in $H^1(\Omega'; \mathbb{R}^2)$, we have

(105)

$$
\int |u_\varepsilon'| dx \leq C \int |\nabla_{x'} u_\varepsilon'| dx \leq C \left( \int \frac{L}{\mu_x} \left| \frac{1}{\mu_x} dx \right|^\frac{1}{2} \left( \int \mu_x \left| \nabla_{x'} u_\varepsilon' \right|^2 dx_1 \right)^\frac{1}{2}
$$

$$
\leq C \left( \int \mu_x \left( \int |\nabla_{x'} u_\varepsilon'|^2 dx_1 dx \right)^\frac{1}{2}
$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
We deduce from (103), (104), and (105) that \( \int_\Omega |u_\varepsilon| dx \leq C \left( \int_\Omega |u_\varepsilon| dx \right)^{\frac{1}{2}} \), yielding
\[ (106) \int_\Omega |u_\varepsilon| dx \leq C. \]

On the other hand, by Korn’s inequality in \( H^1_0(\Omega; \mathbb{R}^2) \), we have
\[ \int_\Omega |u'_\varepsilon|^2 dm_\varepsilon \otimes L^2 = \int_0^L \mu_\varepsilon \left( \int_{\partial \Omega'} |u'_\varepsilon|^2 dx' \right) dx_1 \]
\[ \leq C \int_0^L \mu_\varepsilon \left( \int_{\partial \Omega'} |e_{2\varepsilon}(u'_\varepsilon)|^2 dx' \right) dx_1 \leq C \int_\Omega \mu_\varepsilon |e(u_\varepsilon)|^2 dx. \]

By (103), (106), and (107), estimate (62) is proved. In other words, the field \( \varphi_\varepsilon = u_\varepsilon \) satisfies (83) and (87). Therefore, by Proposition 4.8 the convergences stated in (63) hold for some \( u \in BD^{n,m}(\Omega) \). The proof of Proposition 4.2 is achieved provided we show that
\[ (108) u = 0 \text{ on } \partial \Omega \]
(which is not straightforward, because the trace is not weakly* continuous on \( BD(\Omega) \)) and that
\[ (109) (u^*)' = 0 \text{ on } \mathcal{H}^1 \text{ a.e. on } \partial \Omega' \times (0,L). \]

**Proof of (108).** Let us fix \( \Psi \in C^\infty(\overline{\Omega}; \mathbb{S}^3) \). By passing to the limit as \( \varepsilon \to 0 \) in the integration by parts formula \( \int_\Omega e(u_\varepsilon) : \Psi \, dx = - \int_\Omega u_\varepsilon \cdot \text{div}\Psi \, dx \), and taking into account the strong convergence of \( u_\varepsilon \) to \( u \) in \( L^1(\Omega; \mathbb{R}^3) \) and the weak* convergence of \( (e(u_\varepsilon)) \) to \( \overline{E}(u) \) in \( M(\overline{\Omega}; \mathbb{S}^3) \) (stated in (85), (86)), we obtain \( \int_\Omega \Psi : dE u = - \int_\Omega u \cdot \text{div}\Psi \, dx \) and infer from (11) that \( \int_\Omega \Psi : dE u = - \int_\Omega u \cdot \text{div}\Psi \, dx \). We then deduce from Green’s formula in \( BD(\Omega) \),
\[ \int_\Omega \Psi : dE u = - \int_\Omega u \cdot \text{div}\Psi \, dx + \int_{\partial \Omega} \Psi : u \otimes n d\mathcal{H}^2, \]
that \( \int_{\partial \Omega} \Psi : u \otimes n d\mathcal{H}^2(x) = 0 \). By the arbitrariness of \( \Psi \), taking into account (76), assertion (108) is proved.

**Proof of (109).** Let us fix \( \Psi \in C^\infty(\overline{\Omega}; \mathbb{S}^3) \). Since \( u_\varepsilon = 0 \) on \( \partial \Omega \), (102) holds for \( \varphi_\varepsilon = u_\varepsilon \). We infer
\[ (110) \int_\Omega e_{x'}(u') : \Psi \, dm \otimes L^2 = - \int_{(0,L)} \left( \int_{\partial \Omega'} (u^*)' \cdot \text{div}\Psi \, dx' \right) dm(x_1). \]

By (88) applied to \( \varphi_\varepsilon := u_\varepsilon \), the field \( (u^*)' \) belongs to \( L^2_m(0,L; H^1(\Omega'; \mathbb{R}^3)) \), and hence there exists an \( m \)-negligible subset \( N \) of \( (0,L) \) such that \( (u^*)'(x_1,.) \in H^1(\Omega'; \mathbb{R}^3) \) for all \( x_1 \in (0,L) \setminus N \). By integration by parts, taking into account the symmetry of \( \Psi \), we infer
\[ (111) \int_{\partial \Omega'} (u^*)' \cdot \text{div}\Psi \, dx' = \int_{\partial \Omega'} (u^*)' \cdot \text{div}\Psi \, nd\mathcal{H}^1(x') - \int_{\partial \Omega'} e_{x'}((u^*)') : \Psi \, dx' \text{ m.a.e. } x_1. \]

It follows from (110) and (111) that \( \int_{(0,L) \times \partial \Omega'} (u^*)' \cdot \Psi \, ndm \otimes \mathcal{H}^1 = 0 \). By the arbitrary choice of \( \Psi \), assertion (109) is proved.
5. Partial mollification in $BD^{\nu,m}(\Omega)$. For any two Borel functions $f, g : \Omega \to \mathbb{R}$, we denote by $f * g$ the partial convolution of $g$ and $f$ with respect to the variable $x'$, defined by

\begin{equation}
(112) \quad f * g(x) := \begin{cases} 
\int_{\mathbb{R}^2} \tilde{f}(x_1, x' - y') \tilde{g}(y') dy' & \text{if } \tilde{f}(x_1, x' - .) \tilde{g}(.) \in L^1(\mathbb{R}^2), \\
0 & \text{otherwise}.
\end{cases}
\end{equation}

Given $\delta > 0$, the symbol $f^\delta$ stands for the “partial mollification” of $f$ with respect to $x' \in \Omega$ given by

\begin{equation}
(113) \quad f^\delta := f * \eta^\delta,
\end{equation}

where $\eta^\delta \in \mathcal{D}(\mathbb{R}^2)$ denotes the standard mollifier defined by

\begin{equation}
\eta(x') := \begin{cases} 
C \exp\left(\frac{1}{|x'|^2 - 1}\right) & \text{if } |x'| < 1, \\
0 & \text{otherwise},
\end{cases}
\end{equation}

the constant $C$ being chosen so that $\int_{\mathbb{R}^2} \eta dx' = 1$. Some basic properties are stated in the next lemma.

**Lemma 5.1.** Let $f : \Omega \to \mathbb{R}$ be a Borel function, let $\theta$ be a positive Radon measure on $[0, L]$, $\delta > 0$, and let $p \in [1, +\infty)$. Then $f^\delta$ is Borel measurable. If $f \in L^p_{\theta \otimes \mathcal{L}^2}(\Omega)$, the following estimates hold:

\begin{equation}
(114) \quad \int_{\Omega'} |f^\delta(x_1, x')|^p dx' \leq \int_{\Omega'} |f(x_1, x')|^p dx' \quad \forall x_1 \in (0, L).
\end{equation}

In particular, we have

\begin{equation}
(115) \quad f^\delta \in L^p_{\theta \otimes \mathcal{L}^2}(\Omega), \quad ||f^\delta||_{L^p_{\theta \otimes \mathcal{L}^2}(\Omega)} \leq ||f||_{L^p_{\theta \otimes \mathcal{L}^2}(\Omega)}.
\end{equation}

Moreover, the following convergence holds:

\begin{equation}
(116) \quad f^\delta \xrightarrow{\delta \to 0} f \quad \text{strongly in } L^p_{\theta \otimes \mathcal{L}^2}(\Omega).
\end{equation}

The following regularity assertion holds:

\begin{equation}
(117) \quad f^\delta(x_1, .) \in C^\infty(\overline{\Omega}^\prime) \quad \forall x_1 \in (0, L),
\end{equation}

and

\begin{equation}
(118) \quad \frac{\partial^{n+m}}{\partial x_2^n x_3^m} f^\delta = f * \frac{\partial^{n+m}}{\partial x_2^n x_3^m} \eta^\delta \in L^p_{\theta \otimes \mathcal{L}^2}(\Omega) \quad \forall n, m \in \mathbb{N},
\end{equation}

\begin{equation}
\left\| \frac{\partial^{n+m}}{\partial x_2^n x_3^m} f^\delta \right\|_{L^p_{\theta \otimes \mathcal{L}^2}} \leq C \frac{\delta^{n+m}}{\partial^{n+m}} ||f||_{L^p_{\theta \otimes \mathcal{L}^2}} \quad \forall n, m \in \mathbb{N}.
\end{equation}

If $f \in L^p_{\theta \otimes \mathcal{L}^2}(\Omega)$ and $h \in L^p_{\theta \otimes \mathcal{L}^2}(\Omega)$ ($\frac{1}{p} + \frac{1}{p'} = 1$), then

\begin{equation}
(119) \quad \int_{\Omega} f^\delta h \theta \otimes \mathcal{L}^2 = \int_{\Omega} f h^\delta \theta \otimes \mathcal{L}^2.
\end{equation}

If $\psi \in C^1(\Omega)$, then $\psi^\delta \in C^1(\overline{\Omega})$ and

\begin{equation}
(120) \quad \frac{\partial}{\partial x_k} (\psi^\delta) = \left(\frac{\partial \psi}{\partial x_k}\right)^\delta \quad \forall k \in \{1, 2, 3\}.
\end{equation}
Proof. By Fubini’s theorem, the mappings $h^\pm(x) := \int_{\mathbb{R}^2} (f(x_1, x' - y')\eta_\delta(y'))^\pm dy'$ (where $l^+(x) := \sup\{l(x, 0)\}$) are Borel measurable, and so is the set $A := \{x \in \Omega, \int_{\mathbb{R}^2} |f(x_1, x' - y')\eta_\delta(y')| dy' < +\infty\}$; therefore $f \ast \eta_\delta = (h^+ - h^-)1_A$ is Borel measurable. Assertion (114) follows from the classical properties of convolution in $\mathbb{R}^2$ (notice that $\int_{\mathbb{R}^2} \eta dy' = 1$). Assertion (115) is a straightforward consequence of (114). We have

$$\int_\Omega |f - f^\delta|^p d\theta \otimes L^2 = \int_{[0, L]} d\theta(x_1) \int_{\Omega^y} |f - f^\delta|^p(x_1, x') dx'.$$

By (114), it holds that $\int_{\Omega^y} |f - f^\delta|^p(\cdot, x') dx' \leq 2^{p-1} \int_{\Omega^y} |f|^p(\cdot, x') dx' \in L^1_\delta$, and by the properties of mollification in $L^p(\Omega^y)$, for all $x_1$ such that $f(x_1, \cdot) \in L^p(\Omega^y)$ and thus for $\theta$-a.e. $x_1 \in [0, L]$, $\int_{\Omega^y} |f - f^\delta|^p(x_1, x') dx'$ converges to 0. Assertion (116) then results from the dominated convergence theorem. Assertion (117) follows from well-known properties of mollification, and (118) is obtained by differentiation under the integral sign. Assertion (119) is proved by applying Fubini’s theorem several times. Assertion (120) is obtained by noticing that $\psi \in C^1_c(\mathbb{R}^2)$ and by differentiating under the integral sign.

The next proposition specifies some properties of partial mollification when applied to elements of $BD^{\nu,m}_0(\Omega)$.

**Proposition 5.2.** Let $v \in BD^{\nu,m}_0(\Omega)$ and $\delta > 0$. Then,

$$v^\delta \in BD(\Omega), \ E v^\delta \ll \nu \otimes L^2, \ E(v^\delta) = \left(\frac{E v}{\nu \otimes L^2}\right)^\delta,$$

$$v^\delta \in BD^{\nu,m}_0(\Omega), \ \lim_{\delta \to 0} \left\|v - v^\delta\right\|_{BD^{\nu,m}_0(\Omega)} = 0,$$

and the following hold for all $x_1 \in \Omega, \alpha \in \{2, 3\}$:

$$\lim_{\kappa \to 0^+} (v^\delta)^\mp(x_1 \pm \kappa, x') = (v^\delta)^\pm(x),$$

$$\lim_{\kappa \to 0^+} \frac{\partial}{\partial x_\alpha} (v^\delta)^\mp(x_1 \pm \kappa, x') = \frac{\partial}{\partial x_\alpha} (v^\delta)^\pm(x),$$

$$v^\delta_{\alpha}(x) = \frac{1}{l + 2} \int_{(0, x_1]} (\sigma^v)_{1\alpha}(v^\delta)(s_1, x') \, d\nu(s_1)$$

$$- \sum_{\beta=2}^3 \frac{l}{l + 2} \int_0^{x_1} \frac{\partial v^\delta_{\beta}}{\partial x_\beta}(s_1, x') \, ds_1,$$

$$v^\delta_{\alpha}(x) = \int_{(0, x_1]} (\sigma^v)_{1\alpha}(v^\delta)(s_1, x') \, d\nu(s_1) - \int_0^{x_1} \frac{\partial v^\delta_{\beta}}{\partial x_\beta}(s_1, x') \, ds_1.$$
Proof. By (115) we have \( \mathbf{v}^\delta \in L^1(\Omega;\mathbb{R}^3) \) and \( \int_\Omega |\mathbf{v}^\delta| \, dx \leq \int_\Omega |\mathbf{v}| \, dx \). Let us fix \( \Psi \in \mathcal{D}(\Omega;\mathbb{R}^3) \). Then \( \Psi^\delta \in C^\infty(\Omega;\mathbb{R}^3) \); thus using (119), (120), Green’s formula in \( BD(\Omega) \), and the fact that \( \mathbf{v} \in BD_0^{\nu,m}(\Omega) \), we obtain

\[
\int_\Omega \mathbf{v}^\delta \cdot \text{div} \Psi \, dx = \int_\Omega \mathbf{v} \cdot (\text{div} \Psi) \, dx = \int_\Omega \mathbf{v} \cdot \text{div} (\Psi^\delta) \, dx = - \int_\Omega (\Psi^\delta : \text{d} \mathbf{E} \mathbf{v}) \, dx
\]

\[
= - \int_\Omega (\Psi^\delta : \frac{\mathbf{E} \mathbf{v}}{v_{\text{LS}}^2}) \, d\nu \otimes \mathcal{L}^2 = - \int_\Omega \Psi^\delta : \left( \mathbf{E} \mathbf{v} \frac{1}{v_{\text{LS}}^2} \right) \, d\nu \otimes \mathcal{L}^2.
\]

By the arbitrary choice of \( \Psi \), the assertion (121) is proved. Similarly, applying Green’s formula in \( BD(\Omega) \) and using (119), (120), and (121), we infer, for all \( x_1 \in (0, L) \),

\[
\int_{\Sigma_{x_1}} (\mathbf{v}^\delta) \cdot \mathbf{e}_1 \, d\mathcal{H}^2 = \int_{\Sigma_{x_1}} \Psi : (\mathbf{v}^\delta \cdot \mathbf{n}) \, d\mathcal{H}^2 = \int_{(0,x_1) \times \Omega'} \Psi : \text{d} \mathbf{E} \mathbf{v}^\delta + \int_{(0,x_1) \times \Omega'} \text{div} \Psi \cdot \mathbf{v}^\delta \, dx
\]

\[
= \int_{(0,x_1) \times \Omega'} \Psi : \frac{\mathbf{E} \mathbf{v}}{v_{\text{LS}}^2} \, d\nu \otimes \mathcal{L}^2 + \int_{(0,x_1) \times \Omega'} (\text{div} \Psi) \cdot \mathbf{v}^\delta \, dx
\]

\[
= \int_{(0,x_1) \times \Omega'} \mathbf{v}^\delta : \frac{\mathbf{E} \mathbf{v}}{v_{\text{LS}}^2} \, d\nu \otimes \mathcal{L}^2 + \int_{(0,x_1) \times \Omega'} \text{div} \Psi \cdot \mathbf{v}^\delta \, dx
\]

\[
= \int_{\Sigma_{x_1}} \mathbf{v}^- \cdot \mathbf{e}_1 \, d\mathcal{H}^2 = \int_{\Sigma_{x_1}} \Psi : (\mathbf{v}^-)^\delta \mathbf{e}_1 \, d\mathcal{H}^2.
\]

By the arbitrary nature of \( \Psi \) and \( x_1 \), we deduce that \( (\mathbf{v}^\delta)^- \mathbf{e}_1 = (\mathbf{v}^-)^\delta \mathbf{e}_1 \) and then, taking into account (76), that \( (\mathbf{v}^\delta)^- = (\mathbf{v}^-)^\delta \). Arguing in the same manner for \( (\mathbf{v}^\delta)^+ \), we find the first line of (122). By (72) and the latter line, for all \( x_1 \in (0, L) \) the following equalities hold \( \mathcal{H}^2 \)-a.e. on \( \Sigma_{x_1} \):

\[
(\mathbf{v}^\delta)^* = \frac{1}{2} (\mathbf{v}^+ + \mathbf{v}^-)^\delta = \frac{1}{2} ((\mathbf{v}^\delta)^+ + (\mathbf{v}^\delta)^-) = \frac{1}{2} ((\mathbf{v}^-)^\delta + (\mathbf{v}^+)^\delta) = (\mathbf{v}^\delta)^*.
\]

Assertion (122) is proved. To prove (123), we first notice that by (19), (115), and (122), we have \( ((\mathbf{v}^\delta)^*)' \in L^2_{m}(0, L; L^2(\Omega';\mathbb{R}^3)) \). Taking into account (119), (120), (122) and integrating by parts with respect to \( x' \) in \( L^2_{m}(0, L; H^1_0(\Omega';\mathbb{R}^3)) \), we find

\[
\int_\Omega ((\mathbf{v}^\delta)^*)' \cdot \text{div} \Psi \, dm \otimes \mathcal{L}^2 = \int_\Omega ((\mathbf{v}^\delta)'')^\delta \cdot \text{div} \Psi \, dm \otimes \mathcal{L}^2 = \int_\Omega (\mathbf{v}^\delta)' \cdot \text{div} (\Psi^\delta) \, dm \otimes \mathcal{L}^2
\]

\[
= - \int_{\mathcal{E}_{x'}} (\mathbf{v}^\delta)^\delta : \Psi \, dm \otimes \mathcal{L}^2 = - \int_{\mathcal{E}_{x'}} (\mathbf{v}^\delta)^\delta : \Psi \, dm \otimes \mathcal{L}^2,
\]

yielding (123). Assertion (124) is a consequence of (84), (121), (123), and (116) applied for \( f \in \left\{ \frac{\mathbf{E} \mathbf{v}}{v_{\text{LS}}^2}, \mathbf{e}_{x'}(\mathbf{v}), \nu \right\} \) and \( \theta \in \{ \nu, m \} \). Let us fix \( x \in \Omega \); by (76), (122), and Green’s formula, denoting by \( \gamma \) the trace application on \( BD((x_1, x_1 + \kappa) \times \Omega') \),
we have

\[
\left| (v^\delta)^-(x_1 + \kappa, x') - (v^\delta)^+(x) \right| \leq \sqrt{2} \left| (v^-)^\delta(x_1 + \kappa, x') - (v^+)^\delta(x) \right| e_1
\]

\[
= \sqrt{2} \int_{\partial((x_1, x_1 + \kappa) \times \Omega')} \eta_\delta(x' - y') \gamma(v)(s_1, y') \circ n dH^2(s_1, y')
\]

\[
= \sqrt{2} \int_{(x_1, x_1 + \kappa) \times \Omega'} \eta_\delta(x' - y') dEv(s_1, y') + \int_{(x_1, x_1 + \kappa) \times \Omega'} v \circ \nabla x' \eta_\delta(x' - y') ds_1 dy'
\]

\[
\leq C \left( |E_v| ((x_1, x_1 + \kappa) \times \Omega') + \int_{(x_1, x_1 + \kappa) \times \Omega'} |v| dx \right),
\]

and therefore \( \lim_{\kappa \to 0^+} \left| (v^\delta)^-(x_1 + \kappa, x') - (v^\delta)^+(x) \right| = 0 \). We likewise find that \( \lim_{\kappa \to 0^+} \left| (v^\delta)^+(x_1 - \kappa, x') - (v^\delta)^-(x) \right| = 0 \). The first line of (125) is proved. The second line is obtained by applying (118) and by substituting \( \frac{\partial}{\partial x_\alpha} \) for \( \eta_\delta \) in the above computations. To prove (126), we fix \((x_1, x') \in \Omega, \kappa > 0\): by (121) and Green’s formula, we have

\[
\int_{(x_1, x_1 + \kappa) + \Omega} E_{\beta_1} \frac{v^\delta}{\nu^\delta} (s_1, x') d\nu(s_1) = \int_{(x_1, x_1 + \kappa) \times \Omega'} \eta_\delta(x' - y') dE_{\beta_1} (s_1, y')
\]

\[
= \int_{(x_1, x_1 + \kappa) \times \Omega'} \eta_\delta(x' - y') dE_{\beta_1} (s_1, y')
\]

Likewise, the following hold for \( \beta \in \{2, 3\} \):

\[
\int_{(x_1, x_1 + \kappa) + \Omega} E_{\beta_2} \frac{v^\delta}{\nu^\delta} (s_1, x') d\nu(s_1) = \int_{(x_1, x_1 + \kappa) \times \Omega'} \eta_\delta(x' - y') dE_{\beta_2} (s_1, y')
\]

\[
= \int_{(x_1, x_1 + \kappa) \times \Omega'} \eta_\delta(x' - y') dE_{\beta_2} (s_1, y')
\]

\[
\int_{(x_1, x_1 + \kappa) \times \Omega'} \eta_\delta(x' - y') dE_{\beta_3} (s_1, x') = (v^\delta_1)^+(x_1, y').
\]

Passing to the limit as \( \kappa \to 0^+ \), taking into account (122) and (125), we infer

\[
\int_{(x_1, x_1)} E_{\beta_1} \frac{v^\delta}{\nu^\delta} (s_1, x') d\nu(s_1) = (v^\delta_1)^+(x_1, y'),
\]

\[
\int_{(x_1, x_1)} E_{\beta_2} \frac{v^\delta}{\nu^\delta} (s_1, x') d\nu(s_1) = \int_{(0, x_1)} \frac{\partial}{\partial x_\beta} (s_1, x') ds_1,
\]

yielding, by (61),

\[
\int_{(0, x_1)} (\sigma^\nu)_{11} (v^\delta) (s_1, x') d\nu(s_1) = \int_{(0, x_1)} l \text{tr} \left( \frac{E_{\beta_1}}{\nu^\delta} \right) + 2 E_{\beta_1} \frac{v^\delta}{\nu^\delta} d\nu(s_1)
\]

\[
= (l + 2) (v^\delta_1)^+(x_1, y') + l \sum_{\beta=2}^3 \int_{(0, x_1)} \frac{\partial}{\partial x_\beta} (s_1, x') ds_1.
\]
The first equation in (126) is proved. Similarly, by (121) and Green’s formula, the following holds for \( \alpha \in \{2, 3\} \):

\[
\int_{(0, x_1 + \kappa)} \frac{2E_{1\alpha}}{v \otimes \mathcal{L}^2}(s_1, x') d\nu(s_1) = \int_{(0, x_1 + \kappa) \times \Omega} 2\eta_\delta(x' - y') dE_{1\alpha}(s_1, y')
\]

\[
= \int_{\Sigma_{x_1 + \kappa}} \eta_\delta(x' - y') v^-_\alpha(s_1, y') d\mathcal{H}^2(s_1, y') + \int_{(0, x_1 + \kappa) \times \Omega} v_1(s_1, y') \frac{\partial \eta_\delta}{\partial x_\alpha}(x' - y') ds_1 dy'
\]

\[
= (v^\delta)^-(x_1 + \kappa, x') + \int_0^{x_1 + \kappa} \frac{\partial v^\delta}{\partial x_\alpha}(s_1, x') ds_1.
\]

Sending \( \kappa \) to \( 0^+ \), we infer from (125) that

\[
(128) \quad \int_{(0, x_1]} 2E_{1\alpha} v^\delta(s_1, x') d\nu(s_1) = (v^\delta)^+(x_1, x') + \int_0^{x_1} \frac{\partial v^\delta}{\partial x_\alpha}(s_1, x') ds_1
\]

and from (61) that

\[
\int_{(0, x_1]} (\sigma^\nu)_1\alpha (v^\delta)(s_1, x') d\nu(s_1) = \int_{(0, x_1]} 2E_{1\alpha} v^\delta(s_1, x') d\nu(s_1)
\]

\[
= (v^\delta)^+(x_1, x') + \int_0^{x_1} \frac{\partial v^\delta}{\partial x_\alpha}(s_1, x') ds_1,
\]

yielding the second equation in (126).

\[\square\]

**Proposition 5.3.** For all \( \nu \in BD^{\nu, m}(\Omega) \) and \( \delta > 0 \), the following holds for some constant \( C \) independent of \( \delta \):

\[
\int_\Omega \left( \frac{E\nu^\delta}{\nu \otimes \mathcal{L}^2} \right)^2 d\nu \otimes \mathcal{L}^2 \leq \int_\Omega \left( \frac{E\nu}{\nu \otimes \mathcal{L}^2} \right)^2 d\nu \otimes \mathcal{L}^2 < \infty,
\]

\[
\int_\Omega \left( \frac{\partial}{\partial x_\alpha} \frac{E\nu^\delta}{\nu \otimes \mathcal{L}^2} \right)^2 d\nu \otimes \mathcal{L}^2 \leq \frac{C}{\delta^2} \int_\Omega \left( \frac{E\nu}{\nu \otimes \mathcal{L}^2} \right)^2 d\nu \otimes \mathcal{L}^2 < \infty,
\]

\[
(130) \quad \nu^\delta, \frac{\partial \nu^\delta}{\partial x_\alpha}, \frac{\partial^2 \nu^\delta}{\partial x_\alpha \partial x_\beta} \in L^2(\Omega; \mathbb{R}^3) \quad \forall \alpha, \beta \in \{2, 3\}.
\]

**Proof.** Assertion (129) follows from (115), (118), and (121). By Lemma 4.4, the Lebesgue measure on \( \Omega \) is absolutely continuous with respect to \( m \otimes \mathcal{L}^2 \); thus by (7) and (75),

\[
(131) \quad (v^\delta)^+ = (v^\delta)^- = (v^\delta)^* = \nu^\delta \text{ } \mathcal{L}^3\text{-a.e. in } \Omega.
\]

By (127), (129), (131), the Cauchy–Schwarz inequality, and Fubini’s theorem, we have

\[
\int_\Omega |v_1|^2 dx = \int_\Omega |(v^\delta)^+|^2 dx = \int_\Omega \left( \int_{(0, x_1]} \frac{E_{11}\nu^\delta}{\nu \otimes \mathcal{L}^2}(s_1, x') d\nu(s_1) \right)^2 dx
\]

\[
\leq C \int_\Omega \left( \frac{E_{11}\nu}{\nu \otimes \mathcal{L}^2} \right)^2 d\nu \otimes \mathcal{L}^2 \leq C \int_\Omega \left( \frac{E_{11}\nu}{\nu \otimes \mathcal{L}^2} \right)^2 d\nu \otimes \mathcal{L}^2 < \infty,
\]
yielding, by (118),
\[
\int_{\Omega} \frac{\partial \psi_\alpha}{\partial x_\alpha}^2 \, dx \leq \frac{C}{\delta^2} \int_{\Omega} |v_\alpha|^2 \, dx \leq \frac{C}{\delta^2} \int_{\Omega} \frac{E_{11} v}{\nu \otimes \mathcal{L}^2} \, dv \otimes \mathcal{L}^2 < \infty.
\]

We deduce from (121), (128), (131), and the last inequalities that for \( \alpha \in \{2, 3\} \),
\[
\int_{\Omega} |v_\alpha|^2 \, dx \leq C \int_{\Omega} \left( \sum_{\alpha=1}^{3} \frac{E_{11} v_\alpha^2}{\nu \otimes \mathcal{L}^2} (s_1, x') \, dv(s_1) \right)^{1/2} \, dx + C \int_{\Omega} \left( \sum_{\alpha=1}^{n} \frac{\partial \psi_\alpha}{\partial x_\alpha}(s_1, x') \, ds_1 \right)^{1/2} \, dx
\]
\[
\leq C \int_{\Omega} \frac{E_{11} v}{\nu \otimes \mathcal{L}^2} \, dv \otimes \mathcal{L}^2 + C \int_{\Omega} \frac{\partial \psi_\alpha}{\partial x_\alpha}^2 \, dx \leq \frac{C}{\delta^2} \int_{\Omega} \frac{E v}{\nu \otimes \mathcal{L}^2} \, dv \otimes \mathcal{L}^2 < \infty
\]
and then from (118) that for \( \alpha, \beta \in \{2, 3\} \),
\[
\int_{\Omega} \frac{\partial \psi_\alpha}{\partial x_\alpha} \frac{\partial \psi_\beta}{\partial x_\beta} \, dx \leq \frac{C}{\delta^2} \int_{\Omega} |\psi_\alpha|^2 \, dx \leq \frac{C}{\delta^2} \int_{\Omega} \frac{E v}{\nu \otimes \mathcal{L}^2} \, dv \otimes \mathcal{L}^2 < \infty,
\]
\[
\int_{\Omega} \frac{\partial^2 \psi_\alpha}{\partial x_\alpha \partial x_\beta} \, dx \leq \frac{C}{\delta^2} \int_{\Omega} \frac{\partial \psi_\alpha}{\partial x_\alpha}^2 \, dx \leq \frac{C}{\delta^2} \int_{\Omega} \frac{E v}{\nu \otimes \mathcal{L}^2} \, dv \otimes \mathcal{L}^2 < \infty.
\]

Assertion (130) is proved. \( \Box \)

6. Proof of Theorem 3.1. The proof of Theorem 3.1 rests on the choice of an appropriate sequence of test fields \( (\varphi_\varepsilon) \), which will be constructed from an arbitrarily chosen partially mollified element of \( BD^{\nu, m}_0(\Omega) \), that is, a field \( \varphi \) of the type
\[
\varphi = v^\delta, \quad v \in BD^{\nu, m}_0(\Omega), \quad \delta > 0.
\]

Let us briefly outline our approach. In the spirit of Tartar’s method \[50\], we will multiply (14) by \( \varphi_\varepsilon \) and integrate by parts to obtain
\[
\int_{\Omega} \sigma_\varepsilon(u_\varepsilon) : e(\varphi_\varepsilon) \, dx = \int_{\Omega} f : \varphi_\varepsilon \, dx.
\]
By passing to the limit as \( \varepsilon \to 0 \) in accordance with the convergences established in Propositions 4.2 and 6.1, we will find \( a(u, v^\delta) = \int_{\Omega} f : v^\delta \, dx \), where \( a(\cdot, \cdot) \) is the symmetric bilinear form on \( BD^{\nu, m}_0(\Omega) \) defined by (21). Then, sending \( \delta \to 0 \), we will infer from Proposition 5.2 that \( a(u, v) = \int_{\Omega} f \cdot v \, dx \). From Proposition 4.2, we will deduce that \( u \) belongs to \( BD^{\nu, m}_0(\Omega) \) and hence is a solution to (18). Next, we will prove that \( BD^{\nu, m}_0(\Omega) \) is a Hilbert space and \( a(\cdot, \cdot) \) is coercive and continuous on it; hence the solution to (18) is unique, and the convergences established in Proposition 4.2 for subsequences hold for the complete sequences.

The sequence \( (\varphi_\varepsilon) \) will be deduced from a family of sequences \( ((\varphi^k_\varepsilon))_{k \in \mathbb{N}} \) by a diagonalization argument. Given \( k \in \mathbb{N} \), the construction of \( (\varphi^k_\varepsilon) \) is based on the choice of an appropriate finite partition \( (I^k_j)_{j \in \{1, \ldots, n_k\}} \) of \( (0, L) \) defined as follows:

\[
\nu \left( \bigcup_{j=1}^{n_k} I^k_j \right) = m \left( \left\{ \frac{1}{n} \right\} \right) = 0 \quad \forall k \in \mathbb{N}, \quad \forall j \in \{0, \ldots, n_k\},
\]
\[
\lim_{k \to \infty} \sup_{j \in \{1, \ldots, n_k\}} \left| \frac{t^k_j - t^k_{j-1}}{n_k} \right| = 0.
\]

The sequence \( (\varphi^k_\varepsilon) \) will be deduced from a family of sequences \( ((\varphi^k_\varepsilon))_{k \in \mathbb{N}} \) by a diagonalization argument. Given \( k \in \mathbb{N} \), the construction of \( (\varphi^k_\varepsilon) \) is based on the choice of an appropriate finite partition \( (I^k_j)_{j \in \{1, \ldots, n_k\}} \) of \( (0, L) \) defined as follows:

\[
\nu \left( \bigcup_{j=1}^{n_k} I^k_j \right) = m \left( \left\{ \frac{1}{n} \right\} \right) = 0 \quad \forall k \in \mathbb{N}, \quad \forall j \in \{0, \ldots, n_k\},
\]
\[
\lim_{k \to \infty} \sup_{j \in \{1, \ldots, n_k\}} \left| \frac{t^k_j - t^k_{j-1}}{n_k} \right| = 0.
\]
Setting
\begin{equation}
I_j^k := (t_{j-1}^k, t_j^k) \quad \forall \, k \in \mathbb{N}, \ \forall j \in \{1, \ldots, n_k\},
\end{equation}
we introduce the function \(\phi^k_e : (0, L) \rightarrow \mathbb{R}\) defined by
\begin{equation}
\phi^k_e(x_1) := \sum_{j=1}^{n_k} \nu_e((t_{j-1}^k, x_1)) \frac{1}{\nu_e(I_j^k)} I_j^k(x_1).
\end{equation}
Note that the restriction of \(\phi^k_e\) to each \(I_j^k\) is absolutely continuous, and
\begin{equation}
\frac{d\phi^k_e}{dx_1}(x_1) = \mu^{-1}_e(x_1) \nu_e(I_j^k) \text{ in } I_j^k; \quad 0 \leq \phi^k_e \leq 1 \text{ in } (0, L),
\end{equation}
\(\phi^k_e((t_{j-1}^k)^-) = 1\) and \(\phi^k_e((t_{j-1}^k)^+) = 0 \quad \forall j \in \{1, \ldots, n_k\}\).

For all \(j \in \{1, \ldots, n_k\}\), \(x \in I_j^k \times \Omega', \ \alpha \in \{2, 3\}\), we set (see (61))
\begin{equation}
\varphi_{e1}^k(x) := \frac{\phi^k_e(x_1)}{I^k_j + 2} \int_{I_j^k} \sigma_{11}^{x_1}(\varphi)(s_1, x') ds_1
\end{equation}
\begin{equation}
- \frac{l}{l+2} \sum_{\alpha=2}^{3} \int_{t_{j-1}^k}^{x_1} \frac{\partial \varphi_{e1}^{x_1}}{dx_\alpha}(s_1, x') ds_1
+ \varphi_{e1}^k(t_{j-1}^k, x'),
\end{equation}
\begin{equation}
\varphi_{e\alpha}^k(x) := \phi^k_e(x_1) \int_{I_j^k} \sigma_{1\alpha}^{x_1}(\varphi)(s_1, x') ds_1
- \int_{t_{j-1}^k}^{x_1} \frac{\partial \varphi_{e\alpha}^{x_1}}{dx_\alpha}(s_1, x') ds_1 + \varphi_{e\alpha}^k(t_{j-1}^k, x').
\end{equation}
The sequence of test fields \(\varphi_e\) is determined by the next proposition.

**Proposition 6.1.** Let \(v \in BD_0^{m}(\Omega), \ \delta > 0, \text{ and } \varphi, \ \varphi_e^k\), respectively, be given by (132) and (138). There exists an increasing sequence \(k_e\) of positive integers converging to \(\infty\) such that \(\varphi_e\) defined by
\begin{equation}
\varphi_e := \varphi_e^{k_e}
\end{equation}
strongly converges to \(\varphi\) in \(L^1(\Omega; \mathbb{R}^3)\) and satisfies assumptions (83) and (87) of Proposition 4.8. In particular, the convergences and relations (85), (86), and (88) are satisfied. In addition, the following strong convergences in the sense of (60) hold:
\begin{equation}
\sigma_e(\varphi_e)e_1 \xrightarrow{\mathcal{V}} \sigma(\varphi)e_1, \quad e_{x^i}(\varphi_e) m_e \otimes \mathcal{L}^2 \xrightarrow{\mathcal{V}} e_{x^i}(\varphi^*),
\end{equation}
where \(\sigma^*\) is given by (61).

Proposition 6.1 will be proved in section 6.1. The next step consists of passing to the limit as \(\varepsilon \to 0\) in (133). Expressing in (133), for \(g \in \{u_e, \varphi_e\}\), the scalar fields \(e_{11}(g), \ \sigma_{22}(g), \ \sigma_{33}(g)\) in terms of the components of \(\sigma_e(g)e_1\) and \(e_{x^i}(g)\) (the details of this computation are given at the end of the section) leads to the following equation:
\begin{equation}
\int_{\Omega} \frac{1}{l+2} \sigma_{11}(u_e)\sigma_{11}(\varphi_e) + \sum_{\alpha=2}^{3} \sigma_{1\alpha}(u_e)\sigma_{1\alpha}(\varphi_e) \, dv_e \otimes \mathcal{L}^2
+ \int_{\Omega} 4e_{23}(u_e)e_{23}(\varphi_e) + 4(\frac{l+1}{l+2}) \sum_{\alpha=2}^{3} e_{\alpha\alpha}(u_e)e_{\alpha\alpha}(\varphi_e) \, dm_e \otimes \mathcal{L}^2
+ \int_{\Omega} \int_{\mathcal{L}^2} \left( e_{22}(u_e)e_{33}(\varphi_e) + e_{33}(u_e)e_{22}(\varphi_e) \right) \, dm_e \otimes \mathcal{L}^2 = \int_{\Omega} f \cdot \varphi_e dx.
\end{equation}
(4.3(iii), we obtain
\( (146) \)
\[
\sigma_{e}(u_{\epsilon}) e_{1}^{\nu} \otimes L^{2} \otimes L^{2} \sigma^{\nu}(u) e_{1}, \quad e_{x'}(u'_{\epsilon}) m_{\epsilon} \otimes L^{2} m_{\epsilon} \otimes L^{2} e_{x'}((u')').
\]

By passing to the limit as \( \epsilon \to 0 \) in (141), by virtue of (140), (142), and Lemma 4.3(iii), we obtain
\[
\int_{\Omega} \frac{1}{\tau^{2}} \sigma_{11}^{\nu}(u) \sigma_{11}^{\nu}(\varphi) + \sum_{\alpha=2}^{3} \sigma_{1\alpha}^{\nu}(u) \sigma_{1\alpha}^{\nu}(\varphi) d\nu \otimes L^{2}
\]
\[
+ \int_{\Omega} 4 e_{23}(u^{*}) e_{23}(\varphi^{*}) + \frac{4(l+1)}{\tau^{2}} \sum_{\alpha=2}^{3} e_{\alpha\alpha}(u^{*}) e_{\alpha\alpha}(\varphi^{*}) d\nu \otimes L^{2}
\]
\[
+ \int_{\Omega} 2 l (e_{22}(u^{*}) e_{33}(\varphi^{*}) + e_{33}(u^{*}) e_{22}(\varphi^{*})) d\nu \otimes L^{2} = \int_{\Omega} f \cdot \varphi \ dx.
\]

An elementary computation yields
\[
\int_{\Omega} \frac{1}{\tau^{2}} \sigma_{11}^{\nu}(u) \sigma_{11}^{\nu}(\varphi) + \sum_{\alpha=2}^{3} \sigma_{1\alpha}^{\nu}(u) \sigma_{1\alpha}^{\nu}(\varphi) d\nu \otimes L^{2} = \int_{\Omega} a_{\perp}^{\perp} E_{\varphi} \cdot E_{\varphi} d\nu \otimes L^{2},
\]
\[
\int_{\Omega} 4 e_{23}(u^{*}) e_{23}(\varphi^{*}) + \int_{\Omega} 2 l (e_{22}(u^{*}) e_{33}(\varphi^{*}) + e_{33}(u^{*}) e_{22}(\varphi^{*})) d\nu \otimes L^{2}
\]
\[
+ \frac{4(l+1)}{\tau^{2}} \sum_{\alpha=2}^{3} e_{\alpha\alpha}(u^{*}) e_{\alpha\alpha}(\varphi^{*}) d\nu \otimes L^{2} = \int_{\Omega} a_{\parallel}^{\parallel} e_{x'}(u') \cdot e_{x'}(\varphi') \ dm \otimes L^{2},
\]
where \( a_{\perp}^{\perp} \) and \( a_{\parallel}^{\parallel} \) are given by (22). We infer from (143) and (144) that
\[
a(u, \varphi) = \int_{\Omega} f \cdot \varphi \ dx,
\]
where \( a(\cdot, \cdot) \) is the continuous symmetric bilinear form on \( BD^{\nu, m}(\Omega) \) defined by (21). Substituting \( v^{\delta} \) for \( \varphi \) (see (132)) and letting \( \delta \) converge to 0, we deduce from the strong convergence in \( BD^{\nu, m}(\Omega) \) of \( v^{\delta} \) to \( v \) stated in (124) that
\[
a(u, v) = \int_{\Omega} f \cdot v \ dx \ \forall v \in BD^{\nu, m}(\Omega).
\]
Since, by Proposition 4.2, the field \( u \) belongs to \( BD^{\nu, m}(\Omega) \), we conclude that \( u \) is a solution to (18).

Let us prove that \( BD^{\nu, m}(\Omega) \) is a Hilbert space. By the Poincaré inequality in \( \{ v \in BD(\Omega), \ v = 0 \ \text{on} \ \partial \Omega \} \) (see [53, Remark 2.5(ii), p. 156]), we have
\[
\int_{\Omega} |v| \ dx \leq C \int_{\Omega} |E_{v}| \ dx = C \int_{\Omega} |\nabla^{L} v| \ dx \leq C \left( \int_{\Omega} |\nabla^{L} v|^{2} \ dx \right)^{1/2} \leq C \|v\|_{BD^{\nu, m}(\Omega)} \ \forall v \in BD^{\nu, m}(\Omega),
\]
and hence the seminorm \( \|v\|_{BD^{\nu, m}(\Omega)} \), defined by (20), is a norm on \( BD^{\nu, m}(\Omega) \). On the other hand, Fubini’s theorem and Korn’s inequality in \( H_{0}^{1}(\Omega'; \mathbb{R}^{2}) \) imply
\[
\int_{\Omega} |(v')^{*}|^{2} \ dx \leq C \int_{\Omega} |E_{x'}(v')^{*}|^{2} \ dx' \leq C \left( \int_{\Omega} |E_{x'}(v')^{*}|^{2} \ dx' \right)^{1/2} \leq C \int_{\Omega} |(v')^{2} | \ dx = C \|v\|^{2}_{BD^{\nu, m}(\Omega)} \ \forall v \in BD^{\nu, m}(\Omega).
\]
Let \((v_n)\) be a Cauchy sequence in \(BD_0^{0,m}(\Omega)\). By (146) and (147), the sequences \((v_n), (\langle v'_n \rangle)^*\), \((E_{v_{\nu,m}})\) are Cauchy sequences in \(BD(\Omega), L^2_m(0, L; H^1_0(\Omega; \mathbb{R}^3)), L^2_{\nu \otimes L^2}(\Omega; \mathbb{S}^3)\), respectively, and hence the following convergences hold:

\[
\begin{align*}
\nu_n &\rightarrow \nu \quad \text{strongly in } BD(\Omega), \\
(\nu')^* &\rightarrow \nu^* \quad \text{strongly in } L^2_m(0, L; H^1_0(\Omega'; \mathbb{R}^3)), \\
E_{v_{\nu,m}} &\rightarrow \Xi \quad \text{strongly in } L^2_{\nu \otimes L^2}(\Omega; \mathbb{S}^3)
\end{align*}
\]

for some \(\nu, \nu^*, \Xi\). We prove below that

\[
\begin{align*}
\nu_n &= 0 \quad \text{on } \partial \Omega, \\
(\nu')^* &= \nu^*, \quad m \otimes L^2\text{-a.e.}
\end{align*}
\]

It follows from (148)–(150) that \(\nu \in BD_0^{0,m}(\Omega)\) and that \((v_n)\) strongly converges to \(v\) in \(BD_0^{0,m}(\Omega)\); hence \(BD_0^{0,m}(\Omega)\) is a Hilbert space. The proof of Theorem 3.1 is achieved provided we establish that the form \(a(\cdot, \cdot)\) is continuous and coercive on \(BD_0^{0,m}(\Omega)\). The continuity is straightforward. The coercivity of \(a(\cdot, \cdot)\) results from Lemma 6.2 stated below.

Proof of (149). As \(\nu_n = 0\) on \(\partial \Omega\), by (148) and Green’s formula we have, for \(\Psi \in C^1(\Omega; \mathbb{S}^3)\),

\[
\begin{align*}
\int_{\Omega} \nu \cdot \text{div} \Psi dx &= \lim_{n \to \infty} \int_{\Omega} \nu_n \cdot \text{div} \Psi dx = - \lim_{n \to \infty} \int_{\Omega} \Psi dE_{v_n} \\
&= - \lim_{n \to \infty} \int_{\Omega} E_{v_{\nu,m}} : \nu d\nu \otimes L^2 = - \int_{\Omega} \Xi : \nu d\nu \otimes L^2.
\end{align*}
\]

We deduce from Green’s formula that

\[
- \int_{\Omega} \Psi : dE(\nu) + \int_{\partial \Omega} \nu \otimes n : \Psi d\mathcal{H}^2 = - \int_{\Omega} \Xi : \nu d\nu \otimes L^2.
\]

By the arbitrary choice of \(\psi\), we infer (149).

Proof of (150). By (148), \(\lim_{n \to +\infty} \int_{\Omega} \|(\nu_n')^* - \nu^*\|^2 d\mathcal{H}^2 = 0\), and hence there exists an \(m\)-negligible subset \(N\) of \((0, L)\) such that

\[
\lim_{n \to +\infty} \int_{\Sigma_{x_1}} \|(\nu_n')^* - \nu^*\|^2 d\mathcal{H}^2 = 0 \quad \forall x_1 \in (0, L) \setminus N.
\]

On the other hand, since \((v_n)\) strongly converges to \(v\) in \(BD(\Omega)\), the traces \(\gamma_{\Sigma_{x_1}}(v_n)\) on both sides of \(\Sigma_{x_1}\) strongly converge to \(\gamma_{\Sigma_{x_1}}^\pm(v)\) in \(L^2_{\mathcal{H}^2}(\Sigma_{x_1})\) for all \(x_1 \in (0, L)\). By (71), (75), and (149), \(v_n^*(x_1) = \gamma_{\Sigma_{x_1}}^+(v) = \gamma_{\Sigma_{x_1}}^-(v)\) \(\mathcal{H}^2\)-a.e. on \(\Sigma_{x_1}\) for \(m\)-a.e. \(x_1 \in (0, L)\). Accordingly, there exists an \(m\)-negligible subset \(N_1\) of \((0, L)\) such that

\[
\lim_{n \to +\infty} \int_{\Sigma_{x_1}} |(v_n^*)^* - v^*| d\mathcal{H}^2 = 0 \quad \forall x_1 \in (0, L) \setminus N_1.
\]

Let us fix \(x_1 \in (0, L) \setminus (N \cup N_1)\). By (151) there exists a subsequence of \((v_n')^*\) converging \(\mathcal{H}^2\)-a.e. on \(\Sigma_{x_1}\) to \(w^*\). By (152), there exists a further subsequence converging \(\mathcal{H}^2\)-a.e. on \(\Sigma_{x_1}\) to \((w')^*\). Hence \(w = (w')^* \mathcal{H}^2\)-a.e. on \(\Sigma_{x_1}\) for \(m\)-a.e.
$x_i \in (0, L)$. Setting $A := \{ x \in \Omega, \ w'(x) \neq (v')^*(x) \}$, $A_{x_i} := A \cap \Sigma_{x_i}$, we infer that $H^2(A_{x_i}) = 0$ for all $x_i \in (0, L) \setminus (N \cup N_i)$. It then follows from Fubini’s theorem that $m \otimes L^2(A) = \int_{(0, L)} H^2(A_{x_i}) dm(x_i) = 0$.

Lemma 6.2. For all $v \in BD^{n,m}_0(\Omega)$, $\alpha, \beta \in \{2, 3\}$, we have

\begin{equation}
\int_{\Omega} \left| \frac{E_{\alpha\beta} v}{\nu \otimes L^2} \right|^2 \, dv \otimes L^2 \leq \int_{\Omega} \left| e_{\alpha\beta}(v^*) \right|^2 \, dm \otimes L^2.
\end{equation}

Proof. Let $v \in BD^{n,m}_0(\Omega)$, $\delta > 0$, and $\varphi_e$ be defined by (132), (139). By Proposition 6.1, the convergence (86) holds, and hence by Lemma 4.3(ii) we have for $\alpha, \beta \in \{2, 3\}$

$$
\int_{\Omega} \left| \frac{E_{\alpha\beta} v}{\nu \otimes L^2} \right|^2 \, dv \otimes L^2 \leq \liminf_{\varepsilon \to 0} \int_{\Omega} \mu_e |e_{\alpha\beta}(\varphi_e)|^2 \, dx.
$$

As, on the other hand, by (60) and (140) the following holds:

$$
\lim_{\varepsilon \to 0} \int_{\Omega} \mu_e |e_{\alpha\beta}(\varphi_e)|^2 \, dx = \int_{\Omega} |e_{\alpha\beta}((\varphi^*)')|^2 \, dm \otimes L^2,
$$

we deduce that

$$
\int_{\Omega} \left| \frac{E_{\alpha\beta} v}{\nu \otimes L^2} \right|^2 \, dv \otimes L^2 \leq \int_{\Omega} |e_{\alpha\beta}((\varphi^*)')|^2 \, dm \otimes L^2.
$$

Substituting $\nu^\delta$ for $\varphi$ and passing to the limit as $\delta \to 0$, taking into account (84) and (124), we obtain (153). \hspace{1cm} \Box

Justification of (141). We fix $e, \tilde{e} \in S^3$ and set $\sigma := l(\text{tr} e)I + 2e$, $\tilde{\sigma} := l(\text{tr} \tilde{e})I + 2\tilde{e}$. We have

\begin{equation}
\sigma : \tilde{e} = \sum_{i=1}^{3} \sigma_{ii} \tilde{e}_{ii} + \sigma_{12} \tilde{e}_{12} + \sigma_{13} \tilde{e}_{13} + 4e_{23} \tilde{e}_{23}.
\end{equation}

Noticing that

$$
\sigma_{11} = \frac{1}{\nu+2} (\sigma_{11} - le_{22} - le_{33}), \quad \sigma_{12} = \frac{1}{\nu+2} (\sigma_{11} - le_{22} - le_{33}),
$$

$$
\sigma_{22} = le_{11} + (l + 2)e_{22} + le_{33} = \frac{1}{\nu+2} (\sigma_{11} - le_{22} - le_{33}) + (l + 2)e_{22} + le_{33},
$$

$$
\sigma_{33} = le_{11} + le_{22} + (l + 2)e_{33} = \frac{1}{\nu+2} (\sigma_{11} - le_{22} - le_{33}) + le_{22} + (l + 2)e_{33},
$$

we obtain, by substitution,

\begin{align*}
\sum_{i=1}^{3} \sigma_{ii} \tilde{e}_{ii} &= \sigma_{11} \frac{1}{\nu+2} (\sigma_{11} - le_{22} - le_{33}) + \left( \frac{1}{\nu+2} (\sigma_{11} - le_{22} - le_{33}) + (l + 2)e_{22} + le_{33} \right) \tilde{e}_{22} \\
&\quad + \left( \frac{1}{\nu+2} (\sigma_{11} - le_{22} - le_{33}) + le_{22} + (l + 2)e_{33} \right) \tilde{e}_{33} \\
&= \frac{1}{\nu+2} \sigma_{11} \tilde{e}_{11} + \frac{4(l+1)}{\nu+2} (e_{22} \tilde{e}_{22} + e_{33} \tilde{e}_{33}) + \frac{2l}{\nu+2} (e_{22} \tilde{e}_{33} + e_{33} \tilde{e}_{22}),
\end{align*}

yielding, by (154),

$$
\sigma : \tilde{e} = \frac{1}{\nu+2} \sigma_{11} \tilde{e}_{11} + 2\sigma_{12} \tilde{e}_{12} + 2\sigma_{13} \tilde{e}_{13} + 4e_{23} \tilde{e}_{23} + \frac{4(l+1)}{\nu+2} (e_{22} \tilde{e}_{22} + e_{33} \tilde{e}_{33}) + \frac{2l}{\nu+2} (e_{22} \tilde{e}_{33} + e_{33} \tilde{e}_{22}).
$$

Substituting $e(u_e)$, $e(\varphi_e)$, $\frac{1}{\mu} \sigma_e (u_e)$, $\frac{1}{\mu} \sigma_e (\varphi_e)$, respectively, for $e, \tilde{e}, \sigma, \tilde{\sigma}$, we infer (141).
6.1. Proof of Proposition 6.1. The proof of Proposition 6.1 lies in the asymptotic analysis of the family of sequences \( (\varphi^k)_{k \in \mathbb{N}} \), the results of which are presented in the next proposition, whose proof is located in section 6.2.

**Proposition 6.3.** Let \( v \in BD^0_m(\Omega) \), \( \delta > 0 \), \( \sigma^\nu \) defined by (61), and \( \varphi, \varphi^k \) respectively, be given by (132), (138). Then \( \varphi^k \) belongs to \( H^1(\Omega; \mathbb{R}^3) \) and satisfies

\[
\begin{align*}
(155) \quad & \sup_{k \in \mathbb{N}; \, \varepsilon > 0} \int_{\Omega} |\varphi^k|\, dm_{\varepsilon} \otimes L^2 < \infty, \\
(156) \quad & \lim_{k \to \infty} \sup_{\varepsilon > 0} \int_{\Omega} |\varphi^k - \varphi| \, dx = 0, \\
(157) \quad & \lim_{k \to \infty} \sup_{\varepsilon \to 0} \int_{\Omega} \left| \sigma(\varphi^k)e_1 \right|^2 \, d\nu \otimes L^2 \leq \int_{\Omega} \left| \sigma^\nu(\varphi)e_1 \right|^2 \, d\nu \otimes L^2, \\
(158) \quad & \lim_{k \to \infty} \sup_{\varepsilon \to 0} \int_{\Omega} \left| e^{\nu}(\varphi^k) \right|^2 \, dm_{\varepsilon} \otimes L^2 \leq \int_{\Omega} \left| e^{\nu}(\varphi^*) \right|^2 \, dm \otimes L^2.
\end{align*}
\]

Let us fix a decreasing sequence of positive reals \( (\alpha_k)_{k \in \mathbb{N}} \) converging to 0. By Proposition 6.3, there exists a decreasing sequence of positive reals \( (\varepsilon_k)_{k \in \mathbb{N}} \) converging to 0 as \( k \to \infty \) and such that, for all \( \varepsilon < \varepsilon_k \),

\[
\begin{align*}
& \int_{\Omega} |\varphi^k - \varphi| \, dx \leq \alpha_k, \\
& \int_{\Omega} \left| \sigma(\varphi^k)e_1 \right|^2 \, d\nu \otimes L^2 \leq \int_{\Omega} \left| \sigma^\nu(\varphi)e_1 \right|^2 \, d\nu \otimes L^2 + \alpha_k, \\
& \int_{\Omega} \left| e^{\nu}(\varphi^k) \right|^2 \, dm_{\varepsilon} \otimes L^2 \leq \int_{\Omega} \left| e^{\nu}(\varphi^*) \right|^2 \, dm \otimes L^2 + \alpha_k.
\end{align*}
\]

Let \( k_\varepsilon \) be the unique integer such that \( \varepsilon_{k_\varepsilon+1} \leq \varepsilon < \varepsilon_{k_\varepsilon} \) (notice that \( k_\varepsilon \to \infty \)). We set

\[
\varphi_\varepsilon = \varphi^{k_\varepsilon}.
\]

By (14), (13), (155), (159), and (160), the sequence \( (\varphi_\varepsilon) \) strongly converges to \( \varphi \) in \( L^1(\Omega; \mathbb{R}^3) \) and satisfies assumptions (83) and (87) of Proposition 4.8. Therefore, the convergences (86) and (88) hold. We deduce that

\[
\begin{align*}
\sigma(\varphi_\varepsilon)e_1 & \overset{\nu \otimes L^2, \nu \otimes L^2}{\rightharpoonup} \sigma^\nu(\varphi)e_1, \\
e^{\nu}(\varphi_\varepsilon)' & \overset{m_\varepsilon \otimes L^2, m_\varepsilon \otimes L^2}{\rightharpoonup} e^{\nu}(\varphi^*)'.
\end{align*}
\]

On the other hand, (159) and (160) imply (since \( k_\varepsilon \to \infty \))

\[
\begin{align*}
& \lim_{\varepsilon \to 0} \int_{\Omega} \left| \sigma(\varphi_\varepsilon)e_1 \right|^2 \, d\nu \otimes L^2 \leq \int_{\Omega} \left| \sigma^\nu(\varphi)e_1 \right|^2 \, d\nu \otimes L^2, \\
& \lim_{\varepsilon \to 0} \int_{\Omega} \left| e^{\nu}(\varphi_\varepsilon)' \right|^2 \, dm_{\varepsilon} \otimes L^2 \leq \int_{\Omega} \left| e^{\nu}(\varphi^*)' \right|^2 \, dm \otimes L^2,
\end{align*}
\]

yielding (140). Proposition 6.1 is proved provided we establish Proposition 6.3.
6.2. Proof of Proposition 6.3. Let us prove that $\varphi^k_\epsilon$ belongs to $H^1(\Omega; \mathbb{R}^3)$. By (138), $\varphi^k_\epsilon$ belongs to $H^1(I^k_j \times \Omega'; \mathbb{R}^3)$ for all $j \in \{1, \ldots, n_k - 1\}$, and therefore it suffices to show that the traces of $\varphi^k_\epsilon$ coincide on each side of the common boundaries of $I^k_j \times \Omega'$ and $I^k_{j+1} \times \Omega'$, that is,

\begin{equation}
(\varphi^k_\epsilon)^- = (\varphi^k_\epsilon)^+ \text{ in } (126) \text{ that for } \forall j \in \{1, \ldots, n_k - 1\}.
\end{equation}

One easily deduces from formula (126) (applied to $\nu^\delta = \varphi$) that

\begin{equation}
\varphi^+_1(t^k_j, x') - \varphi^+_1(t^k_{j-1}, x') = \frac{1}{l+2} \int_{I^k_j} (\sigma'_{11})(\varphi)(s_1, x') d\nu(s_1) - \sum_{\alpha=2}^{3} \frac{l}{l+2} \int_{j-1}^{j} \frac{\partial \varphi^\alpha_1}{\partial x_\alpha}(s_1, x') ds_1.
\end{equation}

On the other hand, by the properties of $\phi^k_\epsilon$ and the definition of $\varphi^k_\epsilon$ (see (137), (138)), we have

\begin{equation}
(\varphi^k_\epsilon)^-_1(t^k_j, x') = \frac{1}{l+2} \int_{I^k_j} (\sigma'_{11})(\varphi)(s_1, x') d\nu(s_1) - \sum_{\alpha=2}^{3} \frac{l}{l+2} \int_{j-1}^{j} \frac{\partial \varphi^\alpha_1}{\partial x_\alpha}(s_1, x') ds_1 + \varphi^+_1(t^k_{j-1}, x').
\end{equation}

We infer from (162) and (163) that $(\varphi^k_\epsilon)^-_1(t^k_j, x') = (\varphi^k_\epsilon)^+_1(t^k_j, x')$. Since (137) and (138) imply $(\varphi^k_\epsilon)^+_1(t^k_{j-1}, x') = \varphi^+_1(t^k_{j-1}, x')$ for all $j \in \{1, \ldots, n_k\}$, we deduce that (161) is satisfied by the first component of $\varphi^k_\epsilon$. Likewise, we deduce from the second equation in (126) that for $\alpha \in \{2, 3\}$,

$$\varphi^+_\alpha(t^k_j, x') - \varphi^-_\alpha(t^k_{j-1}, x') = \int_{I^k_j} (\sigma'_{11})(\varphi)(s_1, x') d\nu(s_1) - \int_{I^k_j} \frac{\partial \varphi^\alpha_1}{\partial x_\alpha}(s_1, x') ds_1,$$

and then from (138) that

$$\varphi^k_\epsilon(t^k_j, x') = \int_{I^k_j} (\sigma'_{11})(\varphi)(s_1, x') d\nu(s_1) - \sum_{\alpha=2}^{3} \frac{l}{l+2} \int_{j-1}^{j} \frac{\partial \varphi^\alpha_1}{\partial x_\alpha}(s_1, x') ds_1 + \varphi^+_\alpha(t^k_{j-1}, x'),$$

yielding $(\varphi^k_\epsilon)^-_1(t^k_j, x') = (\varphi^k_\epsilon)^+_1(t^k_j, x')$. Noticing that (138) also implies $(\varphi^k_\epsilon)^+_1(t^k_{j-1}, x') = \varphi^+_1(t^k_{j-1}, x')$ for all $j \in \{1, \ldots, n_k\}$, we infer that $(\varphi^k_\epsilon)^-_1(t^k_j, x') = (\varphi^k_\epsilon)^+_1(t^k_j, x')$. Assertion (161) is proved, and $\varphi^k_\epsilon$ belongs to $H^1(\Omega; \mathbb{R}^3)$.

The next lemma plays a crucial role in the proof of Proposition 6.3. In what follows, for all $x_1 \in (0, L)$, we denote by $j_{x_1}$ the unique integer satisfying

\begin{equation}
x_1 \in \left( t^k_{j-1}, t^k_{j+1} \right].
\end{equation}

**Lemma 6.4.** We have

\begin{equation}
\lim_{\epsilon \to 0} \nu_{\epsilon}(I^k_j) = \nu(I^k_j) \quad \text{and} \quad \lim_{\epsilon \to 0} m_{\epsilon}(I^k_j) = m(I^k_j) \quad \forall k \in \mathbb{N}, \forall j \in \{1, \ldots, n_k\}.
\end{equation}
For all $k \in \mathbb{N}$, the mapping $x_1 \in (0, L) \rightarrow \nu(I_{x_1}^k)$ defined by (135), (164) is Borel measurable and satisfies, for all $p \in (0, \infty),$

\[
\lim_{\varepsilon \to 0} \int \nu(I_{x_1}^k) dm_{\varepsilon}(x_1) = \int \nu(I_{x_1}^k) dm(x_1),
\]
(166)

\[
\lim_{k \to \infty} \int_0^L \nu(I_{x_1}^k)^p d\mathcal{L}^1(x_1) = 0, \quad \lim_{k \to \infty} \int_{[0, L]} \nu(I_{x_1}^k)^p dm(x_1) = 0.
\]

Proof. Since $\nu(\partial I_{x_1}^k) = m(\partial I_{x_1}^k) = 0$ for all $k \in \mathbb{N}, j \in \{1, \ldots, n_k\}$ (see (134)), the convergences (165) result from (15). By (134) and (164), we have

\[
\nu(I_{x_1}^k) = \sum_{j=1}^{n_k} \nu(I_{x}^j) \mathbb{1}_{I_{x}^j}(x_1),
\]
(167)

and hence the mapping $x_1 \in (0, L) \rightarrow \nu(I_{x_1}^k)$ is Borel measurable and, by (165),

\[
\lim_{\varepsilon \to 0} \int \nu(I_{x_1}^k) dm_{\varepsilon}(x_1) = \lim_{\varepsilon \to 0} \sum_{j=1}^{n_k} \nu(I_{x}^j) m_{\varepsilon}(I_{x}^j) = \sum_{j=1}^{n_k} \nu(I_{x}^j) m(I_{x}^j)
\]

\[
= \int \nu(I_{x_1}^k) dm(x_1).
\]

The measure $\nu$ is bounded and the assumptions (134) imply that, for each fixed $x_1 \in (0, L)$, the sequence of sets $(I_{x_1}^k)_{k \in \mathbb{N}}$ is decreasing and satisfies $\bigcap_{k \in \mathbb{N}} I_{x_1}^k = \{x_1\}$; therefore $\lim_{k \to \infty} \nu(I_{x_1}^k) = \nu(\{x_1\})$. Applying the dominated convergence theorem, noticing that, by (16), $\mathcal{L}^1(A) = m(A) = 0$, we infer

\[
\lim_{k \to \infty} \int_0^L \nu(I_{x_1}^k)^p d\mathcal{L}^1(x_1) = \int_{A_{x_1}} \nu(\{x_1\})^p d\mathcal{L}^1(x_1) = 0,
\]

\[
\lim_{k \to \infty} \int_{[0, L]} \nu(I_{x_1}^k)^p dm(x_1) = \int_{A_{x_1}} \nu(\{x_1\})^p dm(x_1) = 0.
\]

Proof of (155). By (61), (126), (130), and (132), we have, for all $x_1 \in (0, L),$

\[
\int_{\Omega'} |\varphi^+(t_{j_1-1}^k, x')|^2 dx' \leq C \int_{\Omega} |\sigma^\nu(\varphi)|^2 dv \otimes \mathcal{L}^2 + C \int_{\Omega} \left| \frac{\partial \varphi}{\partial x_2} \right|^2 dx \leq C,
\]
and therefore by (137), (138), and (164),

\[
\sup_{x_1 \in (0, L)} \int_{\Omega'} |\varphi^k(x_1, x')| dx' \leq C \left( \int_{\Omega} |\sigma^\nu(\varphi)|^2 dv \otimes \mathcal{L}^2 + \int_{\Omega} \left| \frac{\partial \varphi}{\partial x_2} \right|^2 dx + \int_{\Omega'} |\varphi^+(t_{j_1-1}^k, x')|^2 dx' \right) \leq C.
\]

By integrating over $(0, L)$ with respect to $m_{\varepsilon}$, we obtain (155).

Proof of (156). By (126), (130), and (132), the following estimate holds for
x_1 \in I\overline{k} \ (or \ equivalently \ for \ j = j_{x_1});

(168)  
\int_{\Omega'} |\varphi^+(x_1, x') - \varphi^+(t_{j_{x_1}}, x')|dx' \leq C \int_{I_{j_{x_1}}} |\sigma'\nu(\varphi)|d\nu \otimes \mathcal{L}^2 + C \sum_{\alpha=2}^{3} \int_{I_{j_{x_1}}} |\frac{\partial \varphi}{\partial x_{\alpha}}| d\mathcal{L}^3

\leq C \nu(I_{j_{x_1}})^{\frac{1}{2}} ||\sigma'\nu(\varphi)||_{L^2_v \otimes L^2} + C \left( \frac{\sup_{j \in \{1, \ldots, n_k\}} \mathcal{L}^1(I_{j_{x_1}})}{\nu(I_{j_{x_1}})} \right)^{\frac{1}{2}} \sum_{\alpha=2}^{3} \left\| \frac{\partial \varphi}{\partial x_{\alpha}} \right\|_{L^2(\Omega)}^{\frac{1}{2}}

\leq C \nu(I_{j_{x_1}})^{\frac{1}{2}} + C \left( \frac{\sup_{j \in \{1, \ldots, n_k\}} \mathcal{L}^1(I_{j_{x_1}})}{\nu(I_{j_{x_1}})} \right)^{\frac{1}{2}}.

By integration over (0, L) with respect to \mathcal{L}^1, taking into account (134), (164), (166), we infer

(169)  
\lim_{k \to \infty} \int_{\Omega} |\varphi^+(x_1, x') - \varphi^+(t_{j_{x_1}}, x')|dx = 0.

By the same argument, we deduce from (137), (138) that

(170)  
\lim_{k \to \infty} \int_{\Omega} |\varphi^k_e(x_1, x') - \varphi^+(t_{j_{x_1}}, x')|dx = 0.

Assertion (156) results from (169) and (170).

Proof of (157). Taking into account (14), (61), (137), and (138), an elementary computation yields, for all j \in \{1, \ldots, n_k\} and for \mathcal{L}^3-a.e. x \in I\overline{k} \times \Omega',

(171)  
\sigma_e(\varphi^k_e)(x)e_1 = \mu_e \left( \text{tr}(e(\varphi^k_e))I + 2e(\varphi^k_e) \right)e_1

= \frac{1}{\nu_e(I_{j_{x_1}})} \int_{I_{j_{x_1}}} \sigma'(\varphi)(s_1, x')e_1d\nu(s_1) + r^k_e(x),

where for \alpha \in \{2, 3\},

(172)  
\begin{align*}
\frac{r^k_{x_{\alpha}}}{\mu_e}(x) := & \frac{1}{\nu_e(I_{j_{x_1}})} \int_{I_{j_{x_1}}} \sigma'(\varphi)(s_1, x')e_1d\nu(s_1) - \frac{l}{2} \int_{I_{j_{x_1}}} \sigma'(\varphi)(s_1, x')d\nu(s_1) \\
& + \frac{l}{2} \sum_{\beta=2}^{3} \int_{I_{j_{x_1}}} \sigma'(\varphi)(s_1, x')d\nu(s_1) \int_{I_{j_{x_1}}} \frac{\partial (\sigma'\nu(\varphi))_{1\alpha}(s_1, x')}{\partial x_{\alpha}}ds_1,
\end{align*}

(173)  
\lim_{k \to \infty} \limsup_{\epsilon \to 0} \int_{\Omega} |r^k_{\epsilon}|^2 d\nu_\epsilon \otimes \mathcal{L}^2 = 0.
By (171), we have
\[
\int_{\Omega} \left| \sigma(\varphi^k) e_1 - r^k \right|^2 d\nu \otimes \mathcal{L}^2
\]
(174)
\[
= \sum_{j=1}^{nk} \int_{I_j^k} \mu^{-1}(x_1) dx_1 \int_{\Omega} \left| \int_{I_j^k} \sigma(\varphi(x_1, x')) d\nu(x_1) \right|^2 dx'
\]
\[
\leq \sum_{j=1}^{nk} \frac{\nu(I_j^k)}{\nu(I_j^k)^2} \int_{I_j^k} \left| \sigma(\varphi) e_1 \right|^2 d\nu \otimes \mathcal{L}^2.
\]

Assertion (157) follows from (165), (173), (174).

Proof of (173). A computation analogous to (168) yields for \( x_1 \in I_j^k \), taking into account (130),
\[
\int_{\Omega'} \left| \frac{\partial \varphi^+}{\partial x_\alpha}(x_1, x') - \frac{\partial \varphi^+}{\partial x_\alpha}(t_j, x') \right|^2 dx' \leq C \nu(I_j^k) + C \sup_{j \in \{1, \ldots, nk\}} L^1(I_j^k).
\]
(175)
Similarly, by (115),
\[
\int_{\Omega'} \left| \int_{I_j^k} \frac{\partial \sigma^\nu}{\partial x_\alpha}(s_1, x') d\nu(s_1) \right|^2 dx' \leq C \nu(I_j^k) \left\| \frac{\partial \sigma^\nu}{\partial x_\alpha} \right\|_{L^2(\nu \otimes \mathcal{L}^2)} \leq C \nu(I_j^k),
\]
(176)
\[
\int_{\Omega'} \left| \int_{I_j^k} \frac{\partial^2 \varphi}{\partial x_\beta \partial x_\alpha}(s_1, x') ds_1 \right|^2 dx' \leq C \sup_{j \in \{1, \ldots, nk\}} L^1(I_j^k) \left\| \frac{\partial^2 \varphi}{\partial x_\beta \partial x_\alpha} \right\|_{L^2(\Omega)} \leq C \sup_{j \in \{1, \ldots, nk\}} L^1(I_j^k).
\]
(177)
Collecting (137), (172), (175), (176), (177), noticing that \( \mu^2 \nu = m_\varepsilon \), we infer
\[
\int_{\Omega} \left| r^k \right|^2 d\nu \otimes \mathcal{L}^2 \leq C \int \nu(I_{j_1}^k) dm_\varepsilon(x_1) + C \sup_{j \in \{1, \ldots, nk\}} L^1(I_j^k) m_\varepsilon((0, L)).
\]
(178)

Assertion (173) results from (134), (166), (178).

Proof of (158). By (138) we have, for \( x_1 \in I_j^k \),
\[
e^{x}(\varphi^k)(x) = e^{x'}(\varphi^+(t_{j-1}^k, x') + R_e^k(x),
\]
(179)
\[
R_e^k(x) := \phi_e^k(x_1) \int_{I_j^k} e^{x'} (\sigma^\nu(\varphi)e_1) (s_1, x') d\nu(s_1)
\]
\[
- \sum_{\alpha=1}^{3} \int_{I_j^k} \frac{\partial^2 \varphi}{\partial x_\alpha \partial x_\alpha}(s_1, x') ds_1 e_\alpha \otimes e_\beta.
\]

We deduce from (137), (176), (177), (179) that \( \int_{\Omega} \left| R_e^k \right|^2(x) dm_\varepsilon \) is bounded from above by the left-hand side of (178), and hence by (134), (166),
\[
lim_{k \to \infty} sup_{\varepsilon > 0} \int_{\Omega} \left| R_e^k \right|^2 dm_\varepsilon \otimes \mathcal{L}^2 = 0.
\]
(180)
By (13) and (135) we have
\[ \int_{\Omega} |e_x(\varphi^+)|^2 \left( t_{j_1}^k, x' \right) \, dm_{\varepsilon} \otimes \mathcal{L}^2 = \sum_{j=1}^{\infty} m_{\varepsilon}(t_{j_1}^k) \int_{\Omega} |e_x(\varphi^+)|^2 \left( t_{j_1-1}^k, x' \right) \, dx', \]
yielding, by (165),
\[ (181) \lim_{\varepsilon \to 0} \int_{\Omega} |e_x(\varphi^+)|^2 \left( t_{j_1-1}^k, x' \right) \, dm_{\varepsilon} \otimes \mathcal{L}^2 = \int_{\Omega} |e_x(\varphi^+)|^2 \left( t_{j_1-1}^k, x' \right) \, dm \otimes \mathcal{L}^2. \]

By (134) and (164), for all \( x_1 \in (0, L) \), the sequence \( (t_{j_1-1}^k)_{k \in \mathbb{N}} \) converges to \( x_1 \) from below as \( k \to \infty \). Therefore, by (125), for each \( x \in \Omega \) the following holds:
\[ (182) \lim_{k \to \infty} |e_x(\varphi^+)|^2 \left( t_{j_1}^k, x' \right) = |e_x(\varphi^-)|^2 (x). \]

On the other hand, by (126), \( |e_x(\varphi^+)|^2 \left( t_{j_1}^k, x' \right) \leq g(x) \), where
\[ g(x) := \int_{(0,L)} |e_x(\sigma'(\varphi)e_1)|^2 (s_1, x') \, dv(s_1) + \sum_{\alpha, \beta = 2}^{3} \int_{0}^{L} \left| \frac{\partial^2 \varphi}{\partial x_{\alpha} \partial x_{\beta}} \right|^2 (s_1, x') \, ds_1. \]

We deduce from (129) and (130) that \( g \in L^1_{m \otimes \mathcal{L}^2}(\Omega) \) and then deduce from (181), (182) and the dominated convergence theorem that
\[ (183) \lim_{k \to \infty} \int_{\Omega} |e_x(\varphi^+)|^2 \left( t_{j_1}^k, x' \right) \, dm \otimes \mathcal{L}^2 = \int_{\Omega} |e_x(\varphi^-)|^2 \, dm \otimes \mathcal{L}^2. \]

By (16) and (35) we have \( |E\varphi(\Sigma_x)| = 0 \) for \( m \)-a.e. \( x_1 \in (0, L) \); therefore assertion (74) implies that \( e_x(\varphi^-) = e_x(\varphi^+) \, m \otimes \mathcal{L}^2 \)-a.e. Collecting (179), (180), (181), (183), and the last equation, assertion (158) is proved.

### 6.3. Proof of Corollary 3.2
Choosing \( \varphi \in D(\Omega \setminus \Sigma) \) in (145) (see (27)), taking into account (24), we get \( \int_{\Omega \setminus \Sigma} \sigma(u) \cdot e(\varphi) \, dx = \int_{\Omega} f \cdot \varphi \, dx \) and infer, by the arbitrary choice of \( \varphi \), that \( -\text{div}ae(u) = f \) in \( \Omega \setminus \Sigma \). Choosing \( \varphi \in BD''_{0}^{m}(\Omega) \) such that \( \varphi \in C^\infty(U) \) for every connected component \( U \) of \( \Omega \setminus \Sigma \), and integrating \( ae(u) : e(\varphi) \) by parts over each connected component of \( \Omega \setminus \Sigma \), taking the first line of (26) into account, we deduce
\[ \sum_{t \in \mathcal{A}_m} \int_{\Sigma_t} \left( (ae(u)e_1)^{-} - (ae(u)e_1)^{+} \right) \cdot \varphi + m(\{t\})a^\parallel e_x(u^+) : e_x(\varphi^+) \, d\mathcal{H}^2 \]
\[ + \sum_{t \in \mathcal{A}_m} \int_{\Sigma_t} (ae(u)e_1)^{-} \cdot \varphi^- - (ae(u)e_1)^{+} \cdot \varphi^+ + (u^+ - u^-) \nu(\{t\})^{-1} A(\varphi^+ - \varphi^-) \, d\mathcal{H}^2 = 0 \]
and obtain the transmission conditions stated in the second and third lines of (26). Conversely, any solution to (26) satisfies (18).

### 6.4. Sketch of proof of Proposition 3.10
Repeating the argument of the proof of Proposition 4.2, we establish the a priori estimates
\[ \sup_{\varepsilon > 0} \int_{\Omega} |u_{\varepsilon}|^2 \, dm_{\varepsilon} \otimes \mathcal{L}^2 + \int_{\Omega} |u_{\varepsilon}| \, dx + \int_{\Omega} \mu_{\varepsilon} \nabla u_{\varepsilon}^2 \, dx < \infty \]
and deduce, up to a subsequence, the following convergences (analogous to (63)):

\[ u_\varepsilon \rightharpoonup^* u \text{ weakly* in } BV(\Omega; \mathbb{R}^n) \text{ for some } u \in BV^{\nu,m}_0(\Omega), \]

\[ \mu_\varepsilon(C\nabla u_\varepsilon)e_1 \rightharpoonup^{\ast} \nu_{\varepsilon} \otimes L^2 \rightarrow (C_{\nu \otimes L^d-1}) e_1, \quad \nabla x' u_\varepsilon \rightharpoonup^{\ast} m_{\varepsilon} \otimes L^2 \rightarrow \nabla x' u^*, \]

where \( BV^{\nu,m}_0(\Omega) \) and \( \nabla x' \mathbf{v} \) are defined by (54) and (55). Fixing \( \mathbf{v} \in BV^{\nu,m}_0(\Omega) \), \( \delta > 0 \), \( k \in \mathbb{N}^* \), we set \( \varphi = \mathbf{v}^k \) and

\[ \varphi_\varepsilon^k(x) := \left( \int_{j_{x_1}}^{x_1} \left( T^{-1} C \frac{D\varphi}{\nu \otimes L^d-1} \right) e_1(s_1, x') ds_1 \right) \phi_\varepsilon^k(x_1) - \int_{j_{x_1-1}}^{x_1} \left( T^{-1} C \nabla x' \varphi \right) e_1(s_1, x') ds_1 + \varphi^+(t_{j_{x_1-1}}, x'). \]

Mimicking Propositions 6.1 and 6.3, we exhibit a sequence \( \varphi_\varepsilon = (\varphi_\varepsilon^k) \) satisfying

\[ \lim_{\varepsilon \to 0} \int_{\Omega} |\varphi_\varepsilon - \varphi| \, dx = 0, \]

\[ \mu_\varepsilon(C \nabla \varphi_\varepsilon)e_1 \rightharpoonup^{\ast} \nu_{\varepsilon} \otimes L^2 \rightarrow (C_{\nu \otimes L^d-1}) e_1, \quad \nabla x' \varphi_\varepsilon \rightharpoonup^{\ast} m_{\varepsilon} \otimes L^2 \rightarrow \nabla x' \varphi^*. \]

Multiplying (49) by \( \varphi_\varepsilon \), integrating by parts, and applying the formula

\[ C \nabla u_\varepsilon : \nabla \varphi_\varepsilon = (T^{-1} C \nabla u_\varepsilon)e_1 \cdot (C \nabla \varphi_\varepsilon) e_1 - (T^{-1} C \nabla x' u_\varepsilon) e_1 \cdot (C \nabla x' \varphi_\varepsilon) e_1 + C \nabla x' u_\varepsilon : \nabla x' \varphi_\varepsilon, \]

proved below, we obtain

\[ \int_{\Omega} f \cdot \varphi_\varepsilon \, dx = \int_{\Omega} \mu_\varepsilon(T^{-1} C \nabla u_\varepsilon)e_1 \cdot \mu_\varepsilon(C \nabla \varphi_\varepsilon)e_1 \, d\nu_\varepsilon \otimes L^2 \]

\[ + \int_{\Omega} -(T^{-1} C \nabla x' u_\varepsilon)e_1 \cdot (C \nabla x' \varphi_\varepsilon) e_1 + C \nabla x' u_\varepsilon \cdot \nabla x' \varphi_\varepsilon \, dm_\varepsilon \otimes L^2. \]

Passing to the limit as \( \varepsilon \to 0 \) in accordance with (184) and (185), we find

\[ a(u, \varphi) = \int_{\Omega} u \cdot \varphi \, dx, \]

where

\[ a(u, \varphi) := \int_{\Omega} \left( T^{-1} C \frac{D\mathbf{u}}{\nu \otimes L^d-1} \right) e_1 \cdot \left( C_{\nu \otimes L^d-1} \right) e_1 \, d\nu \otimes L^{d-1} \]

\[ - \int_{\Omega} -(T^{-1} C \nabla x' \mathbf{u}^*)e_1 \cdot (C \nabla x' \varphi^*) e_1 + C \nabla x' \mathbf{u}^* : \nabla x' \varphi^* \, dm \otimes L^{d-1}. \]

An elementary computation shows that \( a(\cdot, \cdot) \) is also given by (56). The rest of the proof is similar to that of Theorem 3.1.

Proof of (186). Noticing that \( T \) defined by (51) satisfies

\[ (T \nabla \mathbf{v}) e_1 = (C \nabla \mathbf{v}) e_1 - (C \nabla x' \mathbf{v}) e_1, \]
and taking into account the invertibility of $T$ and the symmetry of $T^{-1}$ and $C$, we obtain

$$
C\nabla u \cdot \nabla v = (C\nabla u) e_1 \cdot (\nabla v) e_1 + C\nabla u : \nabla_{x'} v = (C\nabla u) e_1 \cdot (\nabla v) e_1 + \nabla u : C\nabla_{x'} v \\
= (C\nabla u) e_1 \cdot (\nabla v) e_1 + (\nabla u) e_1 \cdot (C\nabla_{x'} v)e_1 + \nabla_{x'} u : C\nabla_{x'} v \\
= (C\nabla u) e_1 \cdot (\nabla v) e_1 + T^{-1} ((C\nabla u) e_1 - (C\nabla_{x'} u) e_1) \cdot (C\nabla_{x'} v) e_1 + \nabla_{x'} u : C\nabla_{x'} v \\
= (T^{-1} C\nabla u) e_1 \cdot (C\nabla v) e_1 - (T^{-1} C\nabla_{x'} u) e_1 \cdot (C\nabla_{x'} v) e_1 + \nabla_{x'} u : C\nabla_{x'} v.
$$

REFERENCES


