
Further information on publisher's website:
https://doi.org/10.1016/j.jssc.2013.11.006

Publisher's copyright statement:
© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
Synthesis, structure and properties of the oxychalcogenide series \(\text{A}_4\text{O}_4\text{TiSe}_4 \) (\(\text{A} = \text{Sm, Gd, Tb, Dy, Ho, Er and Y} \))

A.J. Tuxworth, J.S.O. Evans*

Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom

A R T I C L E I N F O

Article history:
Received 9 August 2013
Received in revised form 24 October 2013
Accepted 2 November 2013
Available online 21 November 2013

Keywords:
Synthesis
Oxychalcogenides
Rietveld refinement
Crystal structure
Electrical conductivity
Magnetic susceptibility

A B S T R A C T

Seven oxyselelenide materials have been synthesised with composition \(\text{A}_4\text{O}_4\text{TiSe}_4 \) (\(\text{A} = \text{Sm, Gd–Er, Y} \)) via solid state reactions of \(\text{A}_2\text{O}_3, \text{TiSe}_2 \) and \(\text{Se} \) at 900 °C. They are all isostructural with \(\text{Gd}_4\text{O}_4\text{TiSe}_4 \). Structures have been refined from powder X-ray diffraction data and have monoclinic \(C2/m \) symmetry with unit cell parameters of \(a \approx 15.7 \AA, b \approx 3.75 \AA, c \approx 9.65 \AA \) and \(\beta \approx 117.5^\circ \). They contain infinite ribbons of edge-sharing \(\text{A}_4\text{O} \) and \(\text{A}_1\text{Ti} \) tetrahedra 4 units wide, which are linked by chains of \(\text{TiSe}_2 \) edge-sharing octahedra. Compositions \(\text{A} = \text{Gd–Ho, Y} \). Rare earth moments appear to order antiferromagnetically at low temperatures with Gd and Tb showing evidence of ferromagnetism due to spin canting over a narrow temperature range close to \(T_N \).

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.

1. Introduction

Since the discovery of high temperature superconductivity in the layered \(\text{AOFeAs} \) (\(\text{A} \) = rare earth) oxypnictide systems there has been significant interest in mixed anion materials containing an oxide and a second anion [1–5]. \(\text{LaOFeAs} \) adopts the \(\text{ZrCuSiAs} \) structure and can be described as containing alternating layers of fluoride-like edge-shared \(\text{La}_4\text{O} \) tetrahedra and antifluorite-like edge-shared \(\text{FeAs}_4 \) tetrahedra. The A site is in a \(\text{As}_2\text{O}_4 \) 4+1– distorted square antiprisimic coordination environment and links the two layers together. On changing the anion in the antifluorite layer from group 15 to group 16 (i.e. \(\text{As}^{5+} \) to \(\text{Se}^{6–} \)) charge balance requires 50% occupancy of the transition metal site, corresponding to a composition \(\text{AOFe}_2\text{Se}_4 \) or \(\text{AO}_2\text{FeSe}_2 \) (or \(\text{[AOSe]}^2\text{M} \)). Two basic structure types have been reported for this composition. \(\alpha\text{Ce}_2\text{O}_2\text{FeSe}_2 \) adopts a structure directly related to \(\text{LaOFeAs} \) where half of the tetrahedral sites in the antifluorite layers are occupied in an ordered arrangement, giving stripes of edge-shared tetrahedra of \(\text{[FeSe]}^{2–} \) composition [6]. Other 2+ metals (\(\text{Mn, Zn, Cd} \)) adopt different intralayer ordering patterns [7–9]. Alternatively \(\text{A}_2\text{O}_2\text{FeSe}_2 \) can adopt a different structural type, the \(\beta \) form, in which the fluorite-like rare earth oxide 2D layers are split into infinite ribbons four tetrahedra in width [10]. \(\text{Fe} \) is then found in a mixture of \(\text{FeSe}_4 \) tetrahedral sites and \(\text{FeSe}_2 \) octahedral coordination environments.

In this paper we focus on the \(n=4 \) member of the \(\text{A}_n\text{O}_n\text{M} \) series, whose structure has strong similarities to \(\beta\text{-La}_2\text{O}_2\text{FeSe}_2 \). The only known member of this family is \(\text{Gd}_4\text{O}_4\text{TiSe}_4 \). Single crystals of this phase, along with its crystal structure and magnetic properties were originally reported by Meerschaut et al. [11]. The structure contains fluorite-like ribbons four tetrahedra in width, linked by chains of edge-shared \(\text{TiSe}_2 \) octahedra (Fig. 1). The \(\alpha\text{-, }\beta\text{-} \) \(\text{A}_2\text{O}_2\text{FeSe}_2 \) and \(\text{Gd}_4\text{O}_4\text{TiSe}_4 \) structures thus form a series containing exclusively \(\text{MSe}_4 \) tetrahedra (\(\text{M} = \text{transition metal} \)) to mixed \(\text{MSe}_4 \) \(\text{Octahedra} \) and \(\text{MSe}_4 \) tetrahedra to exclusively \(\text{MSe}_4 \) octahedra. As part of a study of the role of \(\text{[A}_2\text{O}_2]^2– \) edge sharing tetrahedral units in stabilising mixed anion crystal structures we report the synthesis of bulk polycrystalline samples of \(\text{A}_4\text{O}_4\text{TiSe}_4 \) (\(\text{A} = \text{Sm, Gd, Tb, Dy, Ho, Er and Y} \)) for the first time and report their structures, electronic and magnetic properties. Ti containing oxyselelenides are relatively rare. Previously reported examples include \(\text{A}_{2\text{Y}}\text{Ti}_3\text{Se}_8 \) (\(\text{A} = \text{Ce, Nd, Sm} \)), \(\text{La}_2\text{O}_2\text{Ti}_5\text{Se}_{10} \), \(\text{La}_4\text{O}_2\text{Ti}_3\text{Se}_9 \) and \(\text{Gd}_4\text{O}_4\text{TiSe}_4 \), all of which contain chains of \(\text{TiSe}_2 \) distorted edge-sharing octahedra connecting rare-earh oxide units [11–13]. \(\text{A}_2\text{O}_2\text{Ti}_3\text{Se}_8 \) (\(\text{A} = \text{Sm, Nd} \)) is a more oxygen rich composition and contains \(\text{TiO}_6 \) and \(\text{TiO}_5\text{Se} \) octahedra [14,15].

2. Experimental

Polycrystalline samples of \(\text{A}_4\text{O}_4\text{TiSe}_4 \) (\(\text{A} = \text{Sm, Gd–Er and Y} \)) were prepared by the reaction of \(\text{A}_2\text{O}_3 \) (all > 99.9% purity and heated to ~1000°C prior to use), \(\text{TiSe}_2 \) synthesised from the
reaction of Ti (99.999%, British Dry Houses Ltd) and Se (99.999%, Alfa Aesar) powders at 800 °C, and Se powders in a 2:1:2 ratio. Reagents were intimately ground together using an agate pestle and mortar and placed inside a 7 mm diameter high density alumina crucible. 325-mesh Al powder (10% molar excess relative to the stoichiometric amount) was placed in a separate alumina crucible to act as an oxygen getter (forming Al2O3 during the reaction). The overall reaction is 2Al2O3 + TiSe2 + 2Se + 1/2Al → A4O4TiSe4 + 1/2Al2O3. The two crucibles were sealed inside evacuated quartz ampoules and heated with the following routine: ramp to 600 °C at 5 °C min−1 and dwell 12 h, ramp to 800 °C at 0.5 °C min−1, dwell 1 h, ramp to 900 °C at 1 °C min−1, and dwell 72 h. The furnace was then allowed to cool to room temperature. All products were produced as black powders; analysis of the products by powder X-ray diffraction confirmed the target phase had been obtained, and that all Al had been oxidised to Al2O3. Under these reaction conditions it was not possible to synthesise the Nd, Eu or Yb analogues, with ternary earth analogues summarised in Table 1. For A=Gd to Ho and Y essentially phase pure samples (impurities < 1% by weight) could be prepared. For Sm, the largest rare earth phase accessible, the highest phase purity obtained was ~90 wt.%; for the smallest rare earth, Er, purity was ~75%. We could not prepare larger or smaller rare earth analogues under these conditions. The seven compounds are all isostructural and adopt the C2/m monoclinic structure reported by Meerschaut et al. for Gd4O4TiSe4 [11]. Plots of Rietveld refinements confirming the structure and phase purity are included in supplementary information along with refined metal and Se fractional coordinates. Cell parameters for each phase are included in Table 1. Fig. 2 shows that there is an essentially smooth increase in cell volume with increasing rare earth, with a concomitant small decrease in unit cell volume.

The structure of A4O4TiSe4 materials is shown in Fig. 1, it has some similarities to the LaOFeAs structure with oxide and chalcogenide ions segregated into layers, though these are zig–zag in nature due to the infinite fluoro A4O layers being interrupted by Ti sites. Oxide ions are found in infinite ribbons of four edge-sharing tetrahedra which run parallel to the b-axis and contain A4O and A2TiO oxygen coordination environments. There are two crystallographically independent A4+ ions which have either ASe2O4 or ASe2O5 4 + 4 square antiprismatic coordination environments. The ASe4O4 square antiprism of A2 is similar to that found in LaOFeAs phases, though with small distortion due to the loss of 4-fold symmetry. The finite width of the tetrahedral ribbons means that one oxygen is replaced by selenium around the A1 site forming ASe2O5 units. The tetrahedral ribbons are interconnected by TiSe2O2 octahedra which themselves form edge-shared chains parallel to the b-axis. The Se sites in the TiSe2O2 octahedra form part of the A1 ASe2O4 coordination polyhedra, whilst the O sites are those (O1) at the edge of the tetrahedral ribbons with A2TiO pseudo-tetrahedral coordination. Work by Meerschaut et al. on the only phase previously reported, Gd4O4TiSe4, shows the U22 parameter for Ti is much higher than for other atoms while the U33 parameter is especially low, as shown in Fig. 1b [11].
Table 1
Unit cell parameters from Rietveld analysis of XRPD data in space group C2/m for A4O4TiSe4 at 295 and 12 K. Numbers in parentheses are Rietveld-derived standard uncertainties.

<table>
<thead>
<tr>
<th></th>
<th>Sm4O4TiSe4</th>
<th>Gd4O4TiSe4</th>
<th>Tb4O4TiSe4</th>
<th>Dy4O4TiSe4</th>
<th>Ho4O4TiSe4</th>
<th>Er4O4TiSe4</th>
<th>Y4O4TiSe4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>15.8920(2)</td>
<td>15.7901(3)</td>
<td>15.6791(3)</td>
<td>15.5962(2)</td>
<td>15.5577(2)</td>
<td>15.4992(4)</td>
<td>15.5693(2)</td>
</tr>
<tr>
<td>295 K</td>
<td>15.8601(3)</td>
<td>15.7809(3)</td>
<td>15.6581(3)</td>
<td>15.5636(3)</td>
<td>15.5259(2)</td>
<td>-</td>
<td>15.5341(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>3.79668(4)</td>
<td>3.75792(5)</td>
<td>3.74085(7)</td>
<td>3.71985(4)</td>
<td>3.70315(4)</td>
<td>3.68819(7)</td>
<td>3.71079(4)</td>
</tr>
<tr>
<td>295 K</td>
<td>3.78966(5)</td>
<td>3.74887(5)</td>
<td>3.73413(6)</td>
<td>3.71335(3)</td>
<td>3.69456(4)</td>
<td>-</td>
<td>3.70168(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>9.7088(1)</td>
<td>9.6641(1)</td>
<td>9.6179(2)</td>
<td>9.5886(1)</td>
<td>9.5686(1)</td>
<td>9.5449(2)</td>
<td>9.5911(1)</td>
</tr>
<tr>
<td>295 K</td>
<td>9.6800(2)</td>
<td>9.6462(2)</td>
<td>9.5883(2)</td>
<td>9.5682(2)</td>
<td>9.5485(1)</td>
<td>-</td>
<td>9.5702(1)</td>
</tr>
<tr>
<td>Beta (°)</td>
<td>117.5170(9)</td>
<td>117.672(1)</td>
<td>117.544(1)</td>
<td>117.532(1)</td>
<td>117.6008(9)</td>
<td>117.552(2)</td>
<td>117.5407(9)</td>
</tr>
<tr>
<td>295 K</td>
<td>117.4793(1)</td>
<td>117.736(1)</td>
<td>117.507(1)</td>
<td>117.491(1)</td>
<td>117.6123(1)</td>
<td>-</td>
<td>117.578(1)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>519.53(1)</td>
<td>507.86(1)</td>
<td>500.18(2)</td>
<td>493.29(1)</td>
<td>488.54(1)</td>
<td>483.73(2)</td>
<td>491.33(1)</td>
</tr>
<tr>
<td>295 K</td>
<td>516.10(1)</td>
<td>505.10(1)</td>
<td>497.25(2)</td>
<td>490.59(2)</td>
<td>485.33(1)</td>
<td>-</td>
<td>488.41(1)</td>
</tr>
</tbody>
</table>

3.2. Thermal expansion

Powder diffraction patterns of six of these compositions (A=Sm, Gd−Ho, and Y) were recorded as a function of temperature from 300 to 12 K. No additional reflections or peak splittings were observed on cooling to indicate any major structural phase changes. Fig. 3 shows the evolution of the unit cell volumes obtained from Rietveld refinement. For the smaller A site elements Tb−Ho and Y a smooth variation in unit cell volume was observed. The overall volume expansion of each phase was similar, with a volume coefficient

\[VT = \frac{V(T)}{V(295)} \]

ranging from 2.1 \times 10^{-5} to 2.3 \times 10^{-5} K^{-1} over the temperature range 12–300 K. As shown in supplementary information, individual cell parameters showed slight differences in thermal expansion, this being most notable in the cell angle \(\beta \) which form two groups with positive and negative temperature gradients. The three materials (Gd, Ho, Y) for which \(\beta \) decreases with temperature have a larger linear expansion in the b cell parameter than other phases.

The behaviour of Gd4O4TiSe4 and Sm4O4TiSe4 below \(\sim 100 \) K differs from that of the other members of the series with a sharp increase in a cell parameter and a discontinuity in \(\beta \) on cooling (Fig. 4). a and \(\beta \) also show hysteretic behaviour, with values on warming differing from values on cooling. This behaviour is repeatable. Fig. 4 also contains the cell parameters of Gd4O4TiSe4 when quench-cooled from 300 to 12 K in 42 min (the maximum cooling rate of the cryostat) and then held at this temperature for \(\sim 22 \) h. These data show that a and \(\beta \) change with time while the other unit cell parameters remained effectively unchanged. For A=Gd a increases from 15.7742(4) to 15.7802(5) Å, and \(\beta \) from 117.7162° to 117.7372°. Similar, but less pronounced, behaviour was observed for Sm4O4TiSe4 (see supplementary information). No marked changes in either peak intensities or peak splitting were observed during this process for either phase.

The origins of this unusual behaviour are not clear, however, Meerschaut et al. report a large thermal parameter for Ti from single crystal studies [11]. This is consistent with the large isotropic thermal parameters for Gd4O4TiSe4 obtained in this work. Meerschaut observed that the Ti \(U_{22} \) anisotropic thermal parameter is much higher than those of the other atoms, while the \(U_{33} \) is too low to be physically reasonable, suggesting that the Ti position could be displaced from (0,0,0). The ellipsoid shape suggests displacement in the ab plane (approximately the TiSe4 plane) to an (0,y,0) or (x,y,0) position with x and y close to zero. It therefore seems likely that the discontinuities in unit cell parameters at low temperature could be caused by displacement of the Ti site from the centre of the TiSe4O2 octahedron at low temperature (either short or long range order). This idea is supported by the relatively low bond valence sum (3.5) at the Ti site. Off-centre Ti displacements have been observed in other TiSe4O2 octahedra [13].

Whilst our diffraction data give strong evidence from peak positions and cell parameters of a low temperature phase transition, peak intensity changes are not sufficient to determine its precise nature. We note that calculated X-ray diffraction patterns for Ti ordering at (0,y,0) with y=0.05 would lead to a maximum intensity of superstructure reflections of only \(\sim 0.1\% \) of the most intense reflection.

3.3. Conductivity measurements

The conductivity of pelleted samples of A4O4TiSe4 (A=Gd, Tb, Dy, Ho and Y) was measured on cooling and warming between 300 K and 130–70 K (depending on where the sample resistance became too high to measure). Room temperature conductivities are given in Table 2 and show an increase in conductivity with decreasing rare earth radius. Plots of ln(conductivity) vs reciprocal temperature show linear behaviour for all samples (Fig. 5), indicating semiconducting behaviour with activation energies of between \(\sim 0.19 \) and \(\sim 0.13 \) eV, suggesting electronic band gaps between 0.378(2) and 0.254(3) eV (Table 2). Preliminary DFT calculations suggest the top of the valence band has predominantly Se p character and the bottom of the conduction band predominantly Ti d character. The smooth decrease in band gap presumably arises from band broadening as the rare earth radius and unit cell volume decreases.

3.4. Magnetic measurements

Magnetic properties of A=Gd, Tb, Dy and Ho were measured in the temperature range 2–292 K with magnetic fields of 100 and 10 Oe. Magnetisation vs applied field plots at 292 K were linear for all four samples, with an essentially zero intercept indicating paramagnetic behaviour at this temperature with no significant ferromagnetic impurities. All samples showed a linear variation of 1/\(\chi \) vs temperature at high temperature, which were fitted using the Curie–Weiss law. The negative values of the Weiss constants (Table 3), indicate weak antiferromagnetic interactions in all four compounds. All samples showed effective magnetic moments deduced from the Curie constant (32–292 K) close to the expected Landé values for A^3+ ions, which is consistent with the presence of Ti^3+.

Fig. 6a shows Gd4O4TiSe4 field cooled (FC) and zero field cooled (ZFC) data collected in 5 K intervals with more closely spaced FC
measurements taken between 2 and 10 K; no difference in FC and ZFC measurements was observed. The μ_{calc} and θ values for Gd$_4$O$_4$TiSe$_4$ are similar to those reported by Meerschaut et al. of μ_{calc} 7.94 μ_B/Gd and θ –12.8(2) K [11]. A sharp increase in susceptibility is observed between 2.5 and 4 K, which is in agreement with data reported by Meerschaut et al. [11]. Fig. 6b shows the field dependence of this feature in susceptibility for our sample. We observe a \(1.5\)-fold increase in peak susceptibility between 100 and 10 Oe compared to the \(4\)-fold increase reported by Meerschaut. The overall behaviour has been attributed [11] to a transition to an antiferromagnetically ordered state below \(1.5\) K.

Between 4 and 2.5 K a small canting of the Gd spins (approximately 3°) is suggested to give a ferromagnetic component to the susceptibility which disappears at low temperature. This canting saturates at relatively low field (a few hundred Oe) giving rise to the observed field-dependent susceptibility below the saturation field.

Fig. 7a shows FC and ZFC susceptibility data for Tb$_4$O$_4$TiSe$_4$ between 2 and 300 K measured at 100 Oe, and Fig. 7b compares data measured in fields of 10 and 100 Oe. In contrast to Gd$_4$O$_4$TiSe$_4$ there is no marked increase in susceptibility on cooling. Both FC

Fig. 2. The effect of increasing rare-earth radius on the unit cell parameters of $A_4O_4TiSe_4$, error bars contained within the data points.

Fig. 3. Unit cell volumes of $A_4O_4TiSe_4$ (A = Sm–Ho) as a function of temperature between 300 and 12 K, obtained from refinement of XRPD data. Sm$_4$O$_4$TiSe$_4$ = orange, Gd$_4$O$_4$TiSe$_4$ = blue, Tb$_4$O$_4$TiSe$_4$ = red, Dy$_4$O$_4$TiSe$_4$ = green, Ho$_4$O$_4$TiSe$_4$ = purple, Y$_4$O$_4$TiSe$_4$ = black. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
Fig. 4. Unit cell parameters of Gd₄O₄TiSe₄ extracted from XRPD data collected at 12 K following rapid cooling (green, left), and on cooling (blue, filled) and warming (red, open) at 5 K h⁻¹. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
and ZFC data recorded at 100 Oe show a decrease in susceptibility below 4 K suggesting antiferromagnetic ordering. The upturn in susceptibility at 5 K and the field dependence of susceptibility could indicate a small ferromagnetic component due to canting as in Gd₄O₄TiSe₄. The magnitude of any canting is, however, significantly lower than in the Gd phase. The deviation between ZFC and FC curves at low temperature is presumably related to unblocking of local ferromagnetic domains at the relatively low measurement field.

Fig. 8 shows data for Dy₄O₄TiSe₄ and Ho₄O₄TiSe₄ which suggest antiferromagnetic ordering with Tₜₑ ≈ 4 K with no increase in susceptibility prior to or following this transition. The rare earth ordering temperatures observed for these phases are comparable to those of, for example AFeO₃ materials. In GdFeO₃ a maximum is susceptibility at 2.5 K is attributed to antiferromagnetic ordering of the Gd moments, while in TbFeO₃ system there is some interaction between the Fe and Tb spin below 10 K, with Tb moments ordering antiferromagnetically below 3.1 K [19–21]. In DyFeO₃ ordering occurs below 4.5 K and HoFeO₃ is reported to have a Tₜₑ of 4.1 K [22]. In each of these systems the Fe sites order antiferromagnetically with Néel temperatures in excess of 600 K [23,24].

4. Conclusions

We describe here the synthesis of bulk polycrystalline samples of six new members of the A₄O₄TiSe₄ family of materials. Synthesis of other rare-earth containing materials was unsuccessful, suggesting that the structure is only accessible using this synthetic route for rare earths with resulting cell volumes ranging from ~483 to 520 Å³. Variable temperature X-ray diffraction experiments show the Sm and Gd analogues undergo a structural distortion on cooling, revealed most clearly in the a lattice parameter and monoclinic angle β. We presume this is an order disorder transition associated with off-centre distortion of the TiSe₄O₂ octahedra. Conductivity measurements show the series to be semiconductors, with electronic band gaps of between 0.378(2) and 0.254(3) eV. SQUID magnetometry shows that Gd₄O₄TiSe₄ has a significant increase in susceptibility between 2.5 and 4 K consistent with previous measurements, which is presumed to be due to spin canting prior to the onset of full antiferromagnetic order. Tb₄O₄TiSe₄ shows similar but less pronounced effects. Dy₄O₄TiSe₄ and Ho₄O₄TiSe₄ order antiferromagnetically below 4 K.

Acknowledgments

We are grateful to EPSRC for funding and Dr R. Coleman for assistance with SQUID measurements.
Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jssc.2013.11.006.

References