Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Reconfinement and loss of stability in jets from active galactic nuclei.

Gourgouliatos, Konstantinos N. and Komissarov, Serguei S. (2018) 'Reconfinement and loss of stability in jets from active galactic nuclei.', Nature astronomy., 2 (2). pp. 161-171.

Abstract

Jets powered by active galactic nuclei appear impressively stable compared with their terrestrial and laboratory counterparts—they can be traced from their origin to distances exceeding their injection radius by up to a billion times. However, some less energetic jets get disrupted and lose their coherence on the scale of their host galaxy. Quite remarkably, on the same scale, these jets are expected to become confined by the thermal pressure of the intra-galactic gas. Motivated by these observations, we have started a systematic study of active galactic nuclei jets undergoing reconfinement via computer simulations. Here, we show that in the case of unmagnetized relativistic jets, the reconfinement is accompanied by the development of an instability and transition to a turbulent state. During their initial growth, the perturbations have a highly organized streamwise-oriented structure, indicating that it is not the Kelvin–Helmholtz instability, the instability which has been the main focus of the jet stability studies so far. Instead, it is closely related to the centrifugal instability. This instability is likely to be behind the division of active galactic nuclei jets into two morphological types in the Fanaroff–Riley classification.

Item Type:Article
Full text:(AM) Accepted Manuscript
First Live Deposit - 22 February 2018
Download PDF
(3158Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1038/s41550-017-0338-3
Record Created:22 Feb 2018 14:13
Last Modified:17 Jun 2018 00:55

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library