Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland

Rebecca A. Neely¹, Sigurdur R. Gislason¹, Magnus Ólafsson², Alex J. McCoy-West³, Christopher R. Pearce⁴, Kevin W. Burton³

¹Institute of Earth Science, University of Iceland, IS-101 Reykjavík, Iceland

²ÍSOR, Iceland GeoSurvey, Orkugardur, Grensásvegur 9, IS-109, Reykjavík, Iceland

³Department of Earth Science, Durham University, Science Labs, Durham, DH1 3LE, UK

⁴National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK.

Key words groundwater, Hydrothermal, Mo isotopes, ocean mass balance
Abstract

Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (<10°C) groundwaters ($\delta^{98/95}\text{Mo}_{\text{GROUNDWATER}}$ = -0.15‰ to +0.47‰; n = 13) show little, if any, fractionation from the host basalt ($\delta^{98/95}\text{Mo}_{\text{BASALT}}$ = +0.16‰ to -0.12‰) and are, on average, lighter than both global and Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10°C) possess isotopically heavy $\delta^{98/95}\text{Mo}_{\text{HYDROTHERMAL}}$ values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the $\delta^{98}\text{Mo}$ data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

1. Introduction

Molybdenum (Mo) is an essential micronutrient and redox sensitive transition metal that provides key information in Earth and environmental studies. Molybdenum stable isotopes have been extensively used as a paleoredox proxy (e.g. Asael et al., 2013; Barling et al., 2001; Barling & Anbar 2004; Archer & Vance 2008; Pearce et al., 2008; Goldberg et al.,
Despite having generally low concentrations in the continental crust (~1-2 ppm; Taylor and McLennan, 1985), Mo is the most abundant transition metal in the modern oceans (~10 ppb; e.g. Nakagawa et al., 2012, Table 1). This relatively high concentration results from the efficient transport of Mo from the continents to the oceans, due to the solubility of Mo phases under oxidative weathering and the subsequent transport of dissolved Mo prior to its slow removal from the oceans in the presence of dissolved O$_2$. The resulting residence time of Mo in the oceans of 440 ka (Miller et al., 2011) is more than two orders of magnitude greater than the ocean mixing time, so that the oceans have uniform Mo elemental and isotope compositions (Nakagawa et al., 2012).

Under oxidising conditions Mo is present in solution as the stable molybdate ion, MoO$_4^{2-}$ (Fig. 2). In this form Mo is slowly removed from the water column through uptake into ferromanganese phases, which preferentially incorporate isotopically light Mo (e.g. Barling et al., 2001; Barling & Andbar 2004; Goldberg et al., 2009; Miller et al., 2011; Wasylenki et al., 2011). As a result of this fractionation the modern oceans are the heaviest Mo reservoir on Earth (Kendall et al., 2016). In contrast, Mo is readily removed from solution in anoxic-sulfidic waters with very little net isotopic fractionation. In the presence of reduced sulfur, Mo forms oxothiomolybdate ions, MoO$_{4-x}$S$_x^{2-}$, which are highly particle-reactive and thus rapidly removed from solution (e.g. Barling et al., 2001). This behaviour underpins the application of Mo isotopes and abundances as a proxy for past ocean anoxia (e.g. Pearce et al., 2008; Asael et al., 2013).

Early paleoredox studies assumed a comparatively straightforward ocean budget in which Mo input was dominated by the dissolved riverine phase that was assumed to be stable through time and to directly reflect the chemical signature of continental rocks. However, many studies have since demonstrated that the average riverine composition is typically heavier...
than the catchment bedrock, both globally (e.g. δ98Mo\textsubscript{GLOBAL RIVERS} = +0.20‰ to +2.30‰; Archer & Vance 2008) and locally (e.g. δ98Mo\textsubscript{ICELAND RIVERS} = -0.25‰ to +1.65‰ in a basaltic (<+0.25‰) catchment; Pearce et al., 2010). This enrichment in heavy isotopes in the dissolved phase is attributed to a number of processes including: incongruent dissolution during weathering (e.g. Archer & Vance 2008; Neubert et al., 2011; Voegelin et al., 2012); adsorption of isotopically light Mo to organic phases in soils (e.g. Siebert et al., 2015; King et al., 2016); and, although considered small in terms of mass balance, adsorption of light Mo to riverine particles (e.g. Archer & Vance 2008; Pearce et al., 2010).

In contrast to the dissolved riverine Mo flux, little attention has been paid to the potential contributions of groundwater to Mo in the oceans. Groundwaters may affect seawater chemistry both directly (through submarine groundwater discharge) and indirectly as a significant source of river base flow. Indeed, Pearce et al. (2010) attributed some of the progressive increase in riverine δ98Mo to the addition of isotopically heavy groundwater. The significance of groundwater contributions to riverine and seawater Mo signatures is poorly constrained due to the paucity of data. To date King et al. (2016) have reported groundwater δ98Mo data: characterised by isotopically heavy δ98Mo compositions (+0.25‰ to +0.51‰) relative to the catchment bedrock (δ98Mo +0.06‰) in Hawaii, attributed to the retention of light isotopes in soils and the preferential leaching of heavy Mo.

In terms of ocean budgets, groundwater contributions to base flow are accounted for in the global riverine discharge. However, the direct contribution of Mo to seawater from submarine groundwater discharge has rarely been taken into account in marine mass balance. Using 226Ra, Moore (1996) demonstrated that submarine groundwater discharge over 350 km of south-eastern coastline of the United States of America contributes up to 40% of the river-water flux. Direct groundwater discharge may therefore contribute a significant proportion of the water flux to the oceans.
At the present day, rivers (potentially including substantial groundwater contributions) are thought to contribute some 90% of oceanic Mo inputs, with the remaining 10% accounted for by chemical exchange in oceanic hydrothermal systems (McManus et al., 2002). For time periods such as the Archean, hydrothermal heat losses were likely much greater than at present (Lowell & Keller 2003). During these time periods the hydrothermal input of Mo may have been more important in the seawater mass balance. Through detailed study of fluid inclusions from identified hydrothermal vents of mid-Archean age in the Barberton formation, South Africa, De Ronde et al. (1997) found that the vent fluids likely had similar chemical signatures to those of modern day vents. Therefore, the study and characterisation of modern hydrothermal systems will enable better constraints to be placed on inputs to the oceans through geologic time.

Data for mid-ocean ridge (MOR) hydrothermal waters are currently limited to a low-temperature (sampling at 25°C, formation fluids ~63°C) flank system on Juan de Fuca. The end-member fluid was estimated to have a composition of $\delta^{98}\text{Mo} +0.8\%$ (McManus et al., 2002). However, it is unclear if this signal represents basalt-seawater interaction or if it was inherited from the overlying sediments. Whilst high-temperature hydrothermal systems are not thought to be significant sources of Mo to the oceans (Miller et al., 2011) the only value currently available for a terrestrial hydrothermal system is $\delta^{98}\text{Mo} -3.7\%$ (Pearce et al., 2010).

This study presents Mo isotope and elemental data for two groundwater systems, in northeast Iceland, both of which have been influenced by hydrothermal activity along with limited basalt and sulfide samples.

2. Geological Setting and Methods
2.1 Geological Setting

Hydrothermal activity in Iceland is widespread and associated with both active volcanic centres and off-axis fracture systems. The studied groundwater systems (Fig.1) are both meteoric in origin and located in the northern volcanic zone (NVZ), which extends from the centre of Iceland into the North Atlantic Ocean.

The first groundwater system is located in the Mývatn area of northeast Iceland (Fig. 1c). It is associated with the volcanic centre of Krafla, an 8 km caldera with a fissure swarm extending 50 km to the north and 40 km to the south. The Krafla hydrothermal fields are located within the caldera whilst the Námafjall field lies outside, within the southern fissure swarm (Gudmundsson & Arnórsson 2005). The fluids are dilute (900 ppm to 1500 ppm total dissolved solids; Gudmundsson & Arnórsson 2002, 2005; Kaasalainen & Stefánsson 2012) and are of meteoric origin (based upon δD and δ¹⁸O content; Darling & Ármannsson).

Groundwaters in this region have been divided into six distinct groups by Ármannsson et al. (2000) based upon their geographic location, δD, δ¹⁸O, and Cl and B concentrations. These classifications are shown in Fig. 1. The most important subset for this study is group V, thought to result from straightforward mixing between cold and geothermal groundwaters (Darling & Ármannsson 1989) they were notably affected by the Krafla fires of 1977 to 1984 with their silica content one constituent yet to return to pre-fire values (Ólafsson et al., 2015).

In this region there is some debate as to whether the dominant hydrothermal source is from Krafla or Námafjall (e.g. Armannsson et al., 2000; Ólafsson et al., 2015). Most recently Ólafsson et al. (2015) used Cl/B ratios to demonstrate that the, warm, Mývatn groundwaters may be dominated by fluids from the Krafla geothermal system. Due to the utilisation of these fields for geothermal energy each is well characterised, and for this reason they are ideal for investigating Mo behaviour in both cold groundwaters and hydrothermally influenced systems.
The second groundwater system, Þeistareykir (Fig. 1b), is located in the westernmost fissure swarm in the NVZ, which is characterised by large normal faults and rift fissures (Sveinbjornsdottir et al., 2013). The high temperature geothermal activity is linked to magma intrusions associated with the most recent volcanic activity ~2500 years ago (Sveinbjornsdottir et al., 2013). Like the Mývatn groundwater system, the fluids are dilute meteoric waters (~750 ppm to 1100 ppm dissolved solids; Óskarsson et al., 2013) from the south of the area (Sveinbjornsdottir et al., 2013).

In addition to the water samples, four basalt and three sulfide samples were analysed (Table 2). The basalts are from drill core chippings at depth within the Reykjanes hydrothermal system, Iceland (Fig. 1a). Sulfide minerals in Icelandic samples studied here were too finely disseminated to obtain sufficient material for Mo isotope analysis. The samples here are from the main Outokumpu ore, Finland comprising a ~4 km long, >50 to 350 m wide and ~10 m thick rectangular-shape sheet of semimassive–massive sulfides. These sulfides are thought to have formed from hydrothermal fluids, perhaps in a mid-ocean ridge setting. Lead isotope data for whole rock and galena samples from the Outokumpu ores define an age of 1943±85 Ma, which is indistinguishable from the 1.95–1.96 Ga U–Pb zircon ages for metagabbros and plagiogranites that intrude the ultramafic rocks (Peltonen et al. 2008). Whilst not from the same location as the groundwaters, combined with literature data, these samples allow some insight into the behaviour of Mo isotopes in these common mineral phases.

2.2 Methods

Groundwater samples (Mývatn: M01 – M20 and Þeistareykír: Þ01 – Þ11) were collected during routine sampling carried out by the Icelandic GeoSurvey (ÍSOR) in conjunction with Landsvirkjun (National Power Company of Iceland) (Kristinsson et al., 2014). Samples for
Mo isotope analysis were filtered (0.2 µm) into 1 L, pre-cleaned, high density polyethylene bottles, acidified and stored in the dark before analysis. Physical properties, sampling conditions, and major- and trace-element concentrations, from Kristinsson et al. (2014), are reproduced in the electronic supplements (Table ES1). All Mo isotope data measured specifically for this study are reported in Table 1.

In situ pH and Eh (redox potential) values, at the measured sampling temperature of the waters, were calculated by PHREEQC version 3.0.6 (Parkhurst & Appelo 2013) using the minteq.v4 database. Redox potential was determined using the measured iron and sulfur speciation and by assuming atmospheric oxygen saturation at the measured water temperature. The results from these approaches were compared and although the absolute values vary depending on the defined redox couple, the relative trends do not. The best approximation of redox shows that oxidised MoO$_4^{2-}$ dominates the groundwaters (Fig. 2), as is known to be the case for most Icelandic waters below 200°C (Arnórsson & Ívarsson 1985).

2.3 Molybdenum isotope chemistry and analysis

Sample preparation and δ98Mo measurements were undertaken in the Department of Earth Sciences at Durham University. Preliminary Mo concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). A volume of each sample was then weighed and spiked with a 97Mo-100Mo double-spike to yield a ~1:1 ratio of total spike:natural Mo with 50-100 ng of natural Mo. Basalt samples were powdered in an agate mill before total dissolution of ~50 mg in a concentrated HF:HNO$_3$ mix (1:2). Basalts were spiked before digestion. After complete dissolution the basalts were dried down before re-dissolution in HCl and treated in the same manner as the groundwater samples. Chemical separation of Mo was achieved using a single pass anion exchange procedure detailed in
Pearce et al. (2009), with an additional 12 ml 0.5 M HF matrix elution step to ensure complete removal of Zn before final Mo elution in 3 M HNO₃.

The sulfides: chalcopyrite (0.2 g), pyrrhotite (0.6 g) and pyrite (0.7 g) were dissolved using a combination of HNO₃ and HCl acids before being purified using a double pass through anion exchange columns following the protocol described in Willbold et al. (2017), where dilute ascorbic acid is used during sample loading for optimal Fe removal.

Molybdenum isotope compositions were measured using a multi-collector ICP-MS (Thermo-Finnigan Neptune, Durham University) equipped with an Aridus II desolvating nebuliser. Samples were aspirated at ~35 µl min⁻¹ and the maximum sensitivity was ~400 V ppm⁻¹. Measurements were made in low resolution mode using X-cones and static collectors. Analyses consisted of 50 cycles of 4s integrations. Total procedural blanks were <1 ng Mo and data processing was conducted offline using a deconvolution routine (Pearce et al. 2009) based on the Newton-Raphson method.

All Mo isotope compositions are reported in conventional delta notation in parts-per-thousand relative to a reference solution (Eq. 1), with errors given as 2 standard deviations from the mean. Given the inconsistent reporting of Mo isotope data in the literature it is important to note that all data, including literature data, are reported relative to SRM NIST 3134 = +0.25‰ (Nägler et al., 2014).

\[
\delta^{98/95}\text{Mo} = \left[\left(\frac{^{98}\text{Mo}}{^{95}\text{Mo}} \right)_{\text{SAMPLE}} / \left(\frac{^{98}\text{Mo}}{^{95}\text{Mo}} \right)_{\text{NIST 3134}} \right] - 1 \right] \cdot 1000 + 0.25
\] (1)
Long-term machine reproducibility was determined by measurement of an in-house Romil standard, which gave δ\(^{98}\)Mo = +0.30 ± 0.05‰ (2SD, n = 183). The IAPSO seawater standard gave a δ\(^{98}\)Mo composition of +2.34 ± 0.08‰ (2SD, n = 43(17) - where n is the number of measurements and in brackets is the number of repeated chemical separations. This is indistinguishable from the mean of published values of +2.33 ± 0.10‰ (given in Goldberg et al., 2013). As this is the first Mo data from Durham University an additional Mo standard (Ou-Mo from the Open University) was run; this gave a mean δ\(^{98}\)Mo value of -0.10 ± 0.03‰ (2SD, n = 11), comparable with values obtained from Imperial College London (-0.12 ± 0.04‰) and the Open University (-0.13 ± 0.02‰) (Goldberg et al., 2013). Taken together, these data suggest a long-term external reproducibility (2 s.d.) of ± 0.08‰ or better.

3. Results

Data from this study are presented in Tables 1 and 2. Additional data for the water samples are reproduced in Table ES1 (Kristinsson et al., 2014). Sampling temperatures range from 0°C to 93.2°C and in situ pH is generally alkaline with a mean of 8.4 (Fig. 2) and ranging from 6.9 to 10.0. Aqueous components such as total dissolved solids (TDS), \(\text{SO}_4^{2-}\), and \(\text{SiO}_2\) increase with temperature with marked increases at temperature over 10°C; therefore, for ease of discussion, samples >10°C are grouped together and considered as hydrothermally influenced groundwaters.

The overall range in Mo concentration in the groundwaters varies from 0.08 ppb to 4.85 ppb (Table 1; Fig. 3). In general, the cold groundwaters (sampling temperature <10°C) contain less Mo than the hydrothermally influenced waters. The Þeistareykir waters (diamonds) have a narrow range of relatively low Mo concentrations (0.08 to 0.22 ppb) whilst the Mývatn waters (circles) range from 0.21 to 4.85 ppb. Curiously, although the group V waters are from
the Mývatn groundwater system and are hydrothermally influenced, they have notably lower Mo concentrations (0.21 to 0.37 ppb, Fig. 3) than the other hydrothermal samples.

The groundwaters possess a wide range of δ^{98}Mo isotope compositions, from -0.15‰ to +2.06‰ (Table 1, Figs. 4 & 5). The cold Þeistareykir waters are isotopically light, with δ^{98}Mo varying from -0.15‰ to +0.17‰, whilst the more hydrothermally influenced waters are isotopically heavier, up to +0.68‰. Similarly, the cold waters from the Mývatn area range from δ^{98}Mo +0.18‰ to +0.47‰ whilst the hydrothermally influenced waters are heavier: between +0.47 and +2.06‰. The exception to this is sample M03 (LUD-4), a cold water well with a high Mo concentration (1.52 ppb), heavy Mo isotope composition of +1.12‰ (Table 1, Fig. 4), and distinctive chemistry including, for example, elevated TDS, SO$_4^{2-}$, and Al (Table ES1).

The basalts contain between 0.14 ppm and 1.01 ppm Mo, with the hyaloclastite having the highest concentration of 4.67 ppm Mo (Table 2). In comparison, the chalcopyrite contains an order of magnitude more Mo, some 38 ppm, whilst the pyrite and pyrrhotite contain 0.074 ppm and 0.048 ppm, respectively. The basalts are isotopically light, ranging from +0.16‰ to −0.12‰, whereas the sulfides are all isotopically heavy; the chalcopyrites are +1.16‰ and the pyrite and pyrrhotite +1.80‰ and +1.46‰, respectively.

4. Discussion

4.1. Cold groundwaters

Generally, in the cold Icelandic groundwaters investigated here, as the Mo concentrations increase the isotopic composition becomes increasingly heavy (Fig. 4). However, with the exception of sample M03, the cold groundwaters show only a small degree of fractionation
away from the average composition of Icelandic basalts (Fig. 4). Icelandic basalts, specifically, are isotopically light and in this study they have compositions that range from $\delta^{98}\text{Mo}_{\text{BASALT}} +0.16\%$ to -0.12%, comparable with published data for Icelandic lavas of $+0.1\%$ (Yang et al., 2015). The cold Þeistareykir samples are also isotopically light (-0.15% to $+0.17\%$), similar to the down-well Icelandic basalts measured in this study (Fig. 4).

The mean $\delta^{98}\text{Mo}$ value of the cold groundwaters at Þeistareykir is -0.01% and at Mývatn, $+0.35\%$. These values are comparable to the basalt-hosted Hawaiian groundwaters measured by King et al. (2016), which have a mean Mo isotope composition of $+0.39\%$ (range: $+0.25\%$ to $+0.51\%$) (Fig. 4). Whilst the waters are isotopically similar, the Mo concentrations in the Icelandic basalts are almost an order of magnitude lower than those in Hawaii. The Hawaiian groundwater Mo concentrations range from 1.83 ppb to 4.86 (mean: 3.0 ppb) whilst the maximum Mo in the cold Icelandic waters is 1.52 ppb with a mean of 0.5 ppb (slightly higher than the 0.2 ppb mean of 150 cold groundwaters from an earlier study in north Iceland; Árnórrsson & Óskarsson 2007).

The Icelandic groundwaters are within the range of Mo isotope values measured in rivers both locally, in Iceland ($\delta^{98}\text{Mo}$ from -0.25% to $+1.65\%$ (Pearce et al., 2010), and globally (-0.10% to +2.30%; summarised in Kendall et al. (2016)). However, on average they are lighter than the global riverine mean of $\delta^{98}\text{Mo} +0.7\%$ (Archer & Vance 2008) (Figs. 4 & 8) and the Iceland riverine mean of $+0.6\%$ (Pearce et al., 2010). If the proportion of direct groundwater discharge is anywhere close to the 40% of river discharge, as suggested by Moore (1996), and the global groundwater mean is isotopically lighter than that of the global river discharge, as indicated by these data and that of King et al. (2016), then the overall input to the oceans may need to be reevaluated (see section 4.4). We recognise, however, that current groundwater $\delta^{98}\text{Mo}$ data remain limited both in terms of their geological setting and their host lithologies.
4.2. Groundwater Mixing

As with all groundwaters, the chemistry of the Þeistareykir and Mývatn waters is determined by the composition of the source, precipitation, degree of water-rock interaction, mixing with other waters, and the introduction of volcanic gases (Ármannsson et al., 2000). In the case of these two systems, the influence of hydrothermal waters is significant with mixing and, to a lesser extent, steam-heating known to be important controls on chemistry (Darling & Ármannsson 1989; Ólafsson et al., 2015).

For the Mývatn waters, the cold groundwater endmember is represented by M07, Garðslind (Fig. 5; Table 1). It is one of the largest cold-water springs in the region and represents the non-hydrothermally influenced endmember (Ólafsson et al., 2015). It is not possible to account for all of the Mývatn groundwater data with one binary mixing model (Fig. 5), suggesting that either there are two distinct hydrothermal endmembers, or else that the chemistry of these waters is not controlled by mixing alone. The most recent work on the origin of these groundwaters (Ólafsson et al., 2015) concluded that the warm waters may be related to the Krafla hydrothermal fluids as opposed to Námafjall. Sample M17 is therefore taken to represent a geothermal endmember; it is isotopically heavy, has a relatively high Mo concentration (1.4 ppb), and negligible Mg, as is characteristic of hydrothermal waters.

Mixing between these two endmembers can account for the majority of the Mývatn groundwaters (solid line; Fig. 5). However, the group V waters do not fit this trend (dashed line; Fig. 5); instead they require an isotopically heavy but low Mo concentration endmember. The low Mo concentration is somewhat surprising as these waters are thought to result from straightforward mixing between cold and geothermal groundwaters (Darling & Ármannsson 1989) and Mo is known to be enriched in geothermal waters compared with cold groundwaters and surface waters (Arnórsson & Ívarsson., 1985). Therefore, there may have
been loss of light Mo to account for the low Mo concentrations seen in these three group V waters.

Ólafsson et al. (2015) argued that these warm waters are, in part, formed as a consequence of steam-heating. Although the behaviour of Mo in the steam (vapour) phase remains poorly understood and data on the isotope composition are limited, it has been suggested that lighter Mo isotopes accumulate in the vapour whilst heavier isotopes remain in the brine (Kendall et al., 2016). This is consistent with preliminary measurements of the vapour phase in geothermal systems from Iceland. All show preferential partitioning of light Mo into the vapour but the Mo concentrations in the vapour phase are relatively low, from 0.30 to 3.27 ppb (Neely et al., 2015).

As Mo can fractionate isotopically on partitioning into a vapour phase, it is possible that this process has influenced the composition of the hydrothermally affected waters. Steam-heating would add isotopically light Mo which cannot explain the isotopically heavy hydrothermal waters. But the loss of steam could leave a residually heavy fluid phase (although this would not explain the high Mo concentrations). Combined with the indication of relatively low Mo concentrations in the vapour (Neely et al., 2015) this suggests that steam-heating alone is not a dominant control on the Mo composition of these waters, in agreement with the conclusions of Ólafsson et al., 2015.

4.3. Controls on hydrothermal endmember Mo composition

Few minerals contain Mo as a major constituent. Of these sulfides such as molybdenite (MoS$_2$) and pyrite (FeS$_2$) dominate, with molybdenite containing approximately 60% Mo by weight and often dominating the mass balance in mineralising systems (Kendall et al., 2016). The association of Mo and S in sulfides and the high solubility of their oxidised species (MoO$_4^{2-}$ and SO$_4^{2-}$) indicates that they can be effectively mobilised during oxidative
weathering. Indeed, based on a similar positive correlation to that shown in Fig. 3, Miller et al. (2011) concluded that pyrite weathering is the dominant source of Mo to modern day rivers. The observed agreement between the groundwater data presented in this study and global river data (Fig. 3) may therefore indicate that groundwater Mo in Iceland is similarly controlled by pyrite and sulfide dissolution.

However, the concentration of Mo in mid-ocean ridge basalt (MORB) sulfides appears to be much lower than continental sulphides (~0.15 ppm; Patten et al., 2013). This suggests that igneous sulfides may not be a significant source of Mo in this setting, consistent with the low Mo concentrations reported in this study for hydrothermal pyrite and pyrrhotite (see Table 2).

In contrast, chalcopyrite may be a significant Mo host, containing 38 ppm Mo (Table 2). Molybdenum is also preferentially incorporated into minerals containing Ti$^{4+}$ and Fe$^{3+}$, so that in basaltic and silicic igneous rocks Mo is often concentrated in ilmenite, titanomagnetite (~10 ppm), and sphene. Relatively high Mo concentrations are also found in olivine (~10 ppm), but are lower in pyroxenes (~0.4 ppm) and plagioclase (~0.2 ppm) (see Arnórsson & Óskarsson, 2007). Arnórsson & Óskarsson (2007) found groundwaters to be more concentrated in Mo than comparable surface waters and, in general agreement with this study, that Mo concentration tends to increase with increasing temperature. They concluded that the main source of Mo to Icelandic groundwaters is the incongruent dissolution of basalt, dominated by plagioclase and to a lesser extent pyroxene and basaltic glass due to Mo retention in titanomagnetite and olivine.

As the main source of Mo is likely to be from the dissolution of the isotopically light host basalts, some process is needed to explain the heavy hydrothermal endmember compositions (Fig. 5). There are several processes that could potentially drive the observed fractionation of Mo isotopes in the warm geothermal waters: (1) pedogenesis; (2) changes in redox state; (3) dissolution of primary minerals; (4) the formation of secondary minerals; and (5) the
dissolution or precipitation of sulfides. To explain the dominant mixing trend in the Mývatn waters (solid line; Fig. 5) the geothermal end member requires an additional source of isotopically heavy Mo whilst the minor, group V endmember mixing (dashed line; Fig. 5) may require loss of isotopically light Mo.

Soils: The retention of light Mo isotopes in soils has been recognised as an important process in driving the preferential enrichment of heavy Mo isotopes in the dissolved phases of pore water, rivers and groundwaters (e.g. Pearce et al., 2010; Siebert et al., 2015; King et al., 2016). Siebert et al. (2015) and King et al. (2016) used selective extraction techniques to show that soil-bound Mo is associated with organic matter and a silicate and/or Ti-oxide residue, as opposed to Mn-Fe oxyhydroxides. However, soils in the NVZ of Iceland are generally thin and sandy with much of the groundwater catchment described as a sand desert, from Vatnajökull glacier in the south to the Atlantic Ocean in the north (see Fig. 5 in Arnalds et al., 2001). Furthermore, as shown in Fig. 6, the in situ partial pressures of CO₂ in the cold groundwaters (from 10⁻⁶ to 10⁻³.₆ bars) are less than that of atmospheric pCO₂ (10⁻³.₄ bars). This suggests that the dissolution and precipitation reactions in these waters take place in isolation from the atmosphere and with little CO₂ contribution from soils (see Fig. 4 in Gislason & Eugster 1987). Consequently it is unlikely that soils exert a significant control on groundwater composition in this region due to their lack of development and coverage.

Redox State: The Eh is relatively difficult to constrain due to the challenges involved in preserving speciation for later laboratory analysis (as demonstrated for Fe speciation in thermal waters; Kaasalainen et al., 2016). For this reason, redox potential was calculated using several approaches and redox pairs. While absolute values of Eh differ between these approaches the speciation in all of the groundwaters is dominated by molybdate, MoO₄²⁻ (Fig. 2). A couple of the samples approach thiomolybdate speciation (MoO₄xSₓ²⁻) and removal of thi isotopically light (e.g. Tossell 2005) species could leave the residual fluids isotopically
heavy. However, despite spanning a wide range of Eh values, the redox conditions do not appear to directly account for the isotope composition of dissolved Mo with no trend seen between redox potential and the Mo composition of the groundwaters (Table 1).

Primary minerals: Redox potential can affect the stability and saturation state of mineral phases and dissolution of basalt is thought to be incongruent with respect to Mo (e.g. Arnórsson & Óskarsson 2007; Voegelin et al., 2012). Data on the Mo isotope composition for individual minerals remains limited, but there may be significant isotope variation between phases. Initial data from Voegelin et al. (2014) indicate that hornblende and biotite are up to 0.6‰ lighter than bulk-rock. Maintenance of mass balance therefore requires other phases to be isotopically heavier, and enhanced dissolution of these phases could be responsible for the heavier Mo isotope composition and increasing Mo concentration of the main geothermal endmember (M17). Indeed, Voegelin et al. (2012) found, in both field (stream catchment) and basalt leach experiments, that the preferential weathering of mineral phases, such as magmatic sulfides, resulted in the enrichment of isotopically heavy Mo in the aqueous phase relative to the basaltic bedrock.

An assessment of the saturation state of primary basalt minerals in the groundwaters was made using the PHREEQC database (Parkhurst & Appelo, 2013). Plagioclase, hydrated basaltic glass, and olivine tend to be undersaturated - suggesting the potential to dissolve - whilst pyroxene and magnetite remain oversaturated – suggesting that these minerals are stable and unlikely to dissolve (Fig. 7, Table ES2). As temperature increases, the tendency for forsterite dissolution becomes dominant over plagioclase, coinciding with increasingly heavy Mo isotope signatures. If olivine retains heavier Mo than plagioclase then incongruent dissolution of these phases may control the Mo isotope signatures of these waters. However, additional Mo isotope data on mineral separates are required to assess this hypothesis and it
seems unlikely that any individual phase could be isotopically heavy enough and in sufficient abundance to generate 2% variations without other processes playing a role.

Secondary minerals: The formation of secondary phases provides a potential mechanism to remove light Mo from solution (as may account for the group V waters). The formation of secondary phases has been used to explain some of the Mo isotope variation in rivers, with adsorption of light Mo onto Mn-Fe oxyhydroxides driving the waters to heavier values (e.g. Archer & Vance, 2008; Miller et al., 2011). In this study, the most common Mn phases are significantly undersaturated in the groundwaters (Table ES2), whilst Fe phases only tend to be oversaturated in the cold groundwaters. From the calculated saturation indices, there is no indication that the formation of these secondary phases in the group V waters is any more likely than in the other hydrothermal waters (Table ES2). With the hydrothermally influenced waters undersaturated for both Fe- and Mn- oxyhydroxides, their formation is considered to exert little influence on Mo isotopes in these groundwaters.

Sulfides: Calculating the saturation state of sulfide minerals in the cold groundwaters is difficult due to the absence of measureable reduced S in the system (Table 1; ES1). However, the oxidising nature of these fluids (Fig. 2) would suggest that they are undersaturated with respect to sulfide minerals. It is known that the mixing of hydrothermal waters with cold waters leads to molybdenite undersaturation and therefore favours dissolution of Mo sulfides (Arnórsson & Ívarsson 1985). Consequently, the main mixing trend in Fig. 5 could, in part, be explained by the dissolution of sulfide phases, increasing the Mo concentration in these waters. Molybdenites show a large isotopic variation, ranging from δ^{98}Mo$_{MOLYBDENITE} = -1.4\%$ to $+2.6\%$ (Breillat et al., 2016) and the hydrothermally sourced chalcopyrite, pyrite, and pyrrhotite measured in this study are all isotopically heavy (δ^{98}Mo = $+1.15$ to $+1.8\%$; Table 2, Fig. 8). The dissolution of sulfide phases could be a source of heavy Mo to the hydrothermal endmembers. However, saturation state calculations systematically show that
the hydrothermally influenced waters are oversaturated for sulfide minerals (Table ES2), indicating that they are stable and that dissolution is unlikely. Therefore, sulfides are unlikely to be controlling the composition of the main hydrothermal endmember (M17).

Alternatively, it is possible that the precipitation of sulfides from reducing, sulfide-bearing waters may instead remove Mo from solution as indicated by the minor group V mixing trend (Fig. 5). When redox is defined using sulfur speciation and trace levels of H$_2$S are assumed to be present in the hydrothermally influenced waters (at levels of 0.01 ppm to 0.01 ppb) then the hydrothermal samples tend towards sulfide (molybdenite, pyrite, and chalcopyrite) saturation (Table ES2). Whilst molybdenite has not been found in active geothermal systems in Iceland, it is known to occur in some New Zealand geothermal systems and has been identified in hydrothermally altered Tertiary basalt formations at Reydarártindur in southeast Iceland (Árnorsson & Ívarsson 1985). Although the sulfides measured in this study are all isotopically heavy and the compiled molybdenite data show a range from -1.4‰ to +2.6‰ (Breillat et al., 2016), Tossell (2005) calculated that aqueous Mo-sulfide complexes are some 2‰ lighter than oxidised complexes. Greber et al. (2014) also suggested that light Mo is preferentially incorporated in molybdenite during crystallization leaving behind a residually heavier hydrothermal fluid. If isotopically light, sulfide formation could generate the M14 endmember and the group V waters, but cannot be responsible for the main groundwater trend.

In the absence of isotope data for sulfides local to the study sites, it is not clear what role, if any, sulfide plays in controlling the Mo chemistry of the waters. Sulfides span a large isotope range and are only sometimes significant hosts of Mo. Although sulfide dissolution and precipitation are potentially contributing factors to the Mo chemistry of these waters, due to the saturation state calculations it is considered more likely that sulfides are stable or forming in these waters, thereby unlikely to be contributing Mo to solution.
The mechanisms controlling the compositions of these waters appear to be complex. There are potentially two distinct hydrothermal endmembers as shown on the mixing diagrams (Fig. 5): both are isotopically heavy but one possesses high Mo concentrations and the other low concentrations. We suggest that an important control on Mo in the groundwaters is the incongruent dissolution of basalt. The hydrothermal waters are increasingly influenced by the dissolution of olivine over plagioclase, with correspondingly heavier Mo isotope compositions as temperature increases. However, it is unlikely that primary mineral dissolution alone could control the composition of the hydrothermal endmember as it would require extraordinary fractionation between these minerals at high temperatures when forming the basalts. The group V waters are likely to be more strongly influenced by Mo removal mechanisms involving the precipitation of isotopically light phases, such as molybdenite or other sulfide minerals.

4.4. Ocean mass balance

Although the mechanisms responsible for the observed Mo isotope composition in groundwater remain complex, the new data allow a more detailed assessment of the Mo budget of the oceans. Typically, the source of Mo to the ocean is considered to be dominated by rivers, with a minor (~10%) hydrothermal component contributing the remaining flux (McManus et al., 2002), and the sinks of Mo comprise euxinic, suboxic, and oxic sedimentary deposition (e.g. Kendall et al., 2016). There are currently two approaches to evaluating the Mo input composition: (1) the assumption that over long time scales the riverine flux will represent the average crustal value (e.g. Asael et al., 2013); and (2) the direct measurement of the riverine compositions (e.g. Archer & Vance 2008). These two approaches result in slightly different estimates of the Mo isotope input to the oceans. The continental crust has a bulk composition of between δ^{98}Mo +0.35‰ and +0.6‰ and a maximum of +0.4‰ for the upper continental crust alone (Willbold et al., 2017). The riverine
average has a higher δ^{98}Mo value of +0.7‰ (Archer & Vance 2008) and when combined in mass balance with a poorly constrained hydrothermal input of δ^{98}Mo +0.8‰ (McManus et al., 2002) results in a Mo input of ca. +0.7‰ (Eq. 2).

\[\delta^{98}\text{Mo}_{\text{input}} = f_{\text{river}} \times \delta^{98}\text{Mo}_{\text{river}} + f_{\text{hydrothermal}} \times \delta^{98}\text{Mo}_{\text{hydrothermal}} \] \hspace{1cm} (2)

If, as the data from these Icelandic cold groundwaters suggest (see section 4.1), the concentration of Mo in groundwaters is similar to that of rivers, and groundwater discharge is the equivalent of 40% of the riverine water flux as suggested by Moore (1996), then groundwaters may account for nearly 30% of the total Mo flux to the oceans (e.g. Rivers: 65%; Groundwater: 27%; Hydrothermal: 8%). The available Mo isotope data for groundwaters indicate that they are isotopically lighter (δ^{98}Mo +0.2‰ for the data in this study and King et al. (2016)) than river compositions, thus necessitating a re-evaluation of the Mo ocean input (Eq. 3).

\[\delta^{98}\text{Mo}_{\text{input}} = f_{\text{river}} \times \delta^{98}\text{Mo}_{\text{river}} + f_{\text{hydrothermal}} \times \delta^{98}\text{Mo}_{\text{hydrothermal}} + f_{\text{groundwater}} \times \delta^{98}\text{Mo}_{\text{groundwater}} \] \hspace{1cm} (3)

The result is a Mo input to the oceans of δ^{98}Mo +0.55‰ which, if correct, brings this combined Mo input closer to that of the estimate based upon crustal values. Furthermore, the data from King et al. (2016) indicate that groundwaters can contain around four times more Mo than the riverine average, in which case their contribution ($f_{\text{groundwater}}$) would increase, potentially even becoming the dominant source, and the total Mo input would be lighter still.
more closely matching that of the crustal values. However, while groundwater data remain limited both in terms of potential flux to the oceans and the isotope composition it is not possible to accurately constrain these values.

Despite high temperature hydrothermal systems generally not being considered a significant source of Mo to the oceans these terrestrial hydrothermal systems maintain relatively high Mo concentrations (up to 4.8 ppb). Without exception, in this study there is preferential enrichment of heavy δ^{98}Mo in the hydrothermal fluid, with minimum δ^{98}Mo in endmember fluids of more than $+2\%$. If this is indicative of the processes contributing to the evolution of MOR hydrothermal fluids then the hydrothermal portion of the Mo input to the oceans may be heavier than previously estimated. Within the modern ocean budget hydrothermal contributions of Mo are minor; increasing the hydrothermal Mo isotope composition to an extreme of δ^{98}Mo $+2.0\%$ only increases the combined input (δ^{98}Mo$_{input}$) by some 0.1%.

However, during early periods of Earth's history, when hydrothermal fluids may have comprised a greater proportion of total inputs to the ocean, the accurate characterisation of these fluids is of greater importance for the interpretation of ocean chemistry. With only one other direct study of hydrothermal fluids, the significance of these systems and reactions at both low and high temperatures remains, at best, uncertain (cf. McManus et al., 2002).

5. Conclusions

We present a comprehensive study of the Mo isotopic composition of waters from two hydrothermally influenced groundwater systems in northeast Iceland with variations in δ^{98}Mo from -0.15% to $+2.06\%$. Although data are currently limited to the basaltic terrains of Hawaii and Iceland, this study represents an important increase in the available data for both cold and hydrothermally influenced groundwaters, with the main findings being:
1) Cold groundwaters in Iceland are isotopically light, ranging from $\delta^{98}\text{Mo} = -0.15\%$ to $+0.47\%$ (mean: $\delta^{98}\text{Mo}_{\text{groundwater}} = +0.18\%$), and are comparable with the Mo composition of groundwaters from Hawaii (mean $\delta^{98}\text{Mo} = +0.39\%$) reported in King et al. (2016). On average the groundwaters are isotopically lighter than rivers and have Mo isotope signatures that are similar to their basaltic host-rocks ($\delta^{98}\text{Mo}_{\text{basalt}} = -0.12\%$ to $+0.16\%$).

2) The majority of hydrothermally influenced groundwaters in this study have higher dissolved Mo concentrations (up to 4.81 ppb) and heavier Mo isotope compositions than the regional cold groundwaters ($\delta^{98}\text{Mo}_{\text{hydrothermal}} = +0.25\%$ to $+2.06\%$). Mixing between the cold groundwaters and hydrothermal endmembers (+2.06\% and $+1.08\%$) is the main control on the Mo composition of the groundwater samples. The incongruent dissolution of basalt and dissolution and precipitation of sulfide minerals are both processes capable of controlling hydrothermal endmember Mo compositions.

3) With the inclusion of a direct groundwater contribution to the Mo flux to the oceans the combined groundwater and river input is re-evaluated to $\delta^{98}\text{Mo} = +0.55\%$, in closer agreement with estimates based upon the crustal composition alone. However, whilst groundwater data remain limited these estimates should be considered with caution.
References

Acknowledgments

The geochemistry team at ÍSOR are thanked for sample collection along with Landsvirkjun for permission to publish the sample information. Geoff Nowell, in particular, is thanked for his generous help in the preparation and isotopic analysis of the samples and Chris Ottley for assistance with ICP-MS analysis. We acknowledge financial support from Initial Training Network, MetTrans, grant number 290336 from the European Research Council. Finally we would like to thank the three anonymous reviewers and Editor, Derek Vance, for their advice and thoughtful consideration of this manuscript.
Figure Captions:

Figure 1: Map showing the location and sampling temperatures of the Mývatn (M) and Þeistareykir (Þ) groundwater samples in the northern volcanic zone (NVZ) of Iceland. Inset A shows the two groundwater systems in relation to the major geographical features of Iceland; the main volcanic and fracture zones are shown in red and major icecaps and glaciers in white; and the black star is the Reykjanes hydrothermal system, location of the basalt samples. Inset B depicts the Þeistareykir sampling locations (diamonds) and inset C the Mývatn groundwater samples (circles). The Mývatn samples overly a simple base map including the Krafla caldera features (Gudmundsson & Arnórsson 2002) and the groundwater types (I-VI) defined on the basis of their chemistry by Ármannsson et al. (2000). The cold groundwater for both systems are sourced from as far south as Vatnajökull (VJ) glacier.

Figure 2: pH-Eh diagram at 25°C and 105 Pa for the S-O-H system with available, oxidised, Mo data superimposed. Mo speciation below the $\text{SO}_4^{2-} - \text{H}_2\text{S}$ transition is not well characterised although it is thought to be dominated by oxythiomolybdate species ($\text{MoO}_{4-x}\text{S}_x^{2-}$). Calculated in situ pH and Eh for the groundwater samples are plotted: filled circles are Mývatn groundwaters whilst the diamonds are from Þeistareykir; blue denotes a sampling temperature of less than 10°C and red, hydrothermally influenced waters. Despite a range in Eh values, all samples are dominated by MoO_4^{2-}. Calculations are based on the miniteq.v4 database within PHREEQC (Parkhurst & Appelo 2013). The stability field for water lies between the two dashed lines.

Figure 3: Molybdenum versus SO_4^{2-} in precipitation, surface waters, groundwaters, and geothermal systems after Miller et al. (2011). The grey data are from the literature: river and precipitation data from Miller et al. (2011) and Neubert et al. (2011), geothermal from Kaasalainen & Stefánsson (2012) and Arnórsson & Ívarsson (1985), and groundwaters from Leybourne & Cameron (2008). The coloured data are from this study: filled circles are Mývatn groundwaters whilst the diamonds are from Þeistareykir, blue denotes a sampling temperature of less than 10°C and red, hydrothermally influenced waters. After Miller et al. (2011), a best-fit regression line, forced through the origin, is plotted through the groundwaters from this study (excluding the group V waters as described in the text) and the resulting slope and coefficient of determination (R^2) are shown and are in agreement with those reported in Miller et al. (2011) for rivers ($y = 0.01x$, $R^2 = 0.69$).

Figure 4: Mo concentration and isotope data for terrestrial groundwaters including those that are geothermally affected (red). All data are from this study save for the four Hawaiian groundwaters (blue crosses) from King et al. (2016). For reference, values for a range of Icelandic basalts (Table 2 & Yang et al., 2015) and the mean global river composition (Archer & Vance 2008) are plotted.
Figure 5: Relationship between Mo isotopes and Mo and SO$_{4}^{2-}$ concentrations in the Mývatn groundwater system. Cold groundwaters (sampling temperature <10°C) are depicted in blue whilst those that are geothermally influenced are shown in red. The distinct group V waters (as discussed in the main text) are open red circles. For reference, the Mo isotopic range of Icelandic basalts (δ^{98}Mo$_{BASALT} = -0.1$ to -0.4‰) is shown as the shaded band (Table 2). There are two mixing lines, both have a common cold groundwater endmember (M07) but two distinct geothermal endmembers: one low [Mo], mid-range SO$_{4}^{2-}$, and isotopically heavy (M14, dashed line) and one high [Mo], high SO$_{4}^{2-}$, and heavy Mo isotopes (M17solid line).

Figure 6: Log pCO$_2$ for all of the groundwaters. The pH and pCO$_2$ are calculated for the sampling conditions using PHREEQC (Parkhurst & Appelo 2013) and the minteq.v4 database. The reference line is the pCO$_2$ of the modern atmosphere.

Figure 7: Basalt primary mineral saturation indices (SI) in the Mývatn and Þeistareykir groundwaters plotted against both the Mo isotope composition and sampling temperature of the waters. Saturation indices are calculated using the PHREEQC database and SI >0 suggests that the mineral phase is stable whilst SI <0 indicates the possibility of dissolution. The grey arrows highlight the potential increase in olivine dissolution over plagioclase dissolution with increasing temperature.

Figure 8: Molybdenum isotope compositions for sources of Mo to the modern oceans. The grey bars denote the range whilst the black diamonds show mean values and the stars are minimum estimates of the hydrothermal endmembers. The grey outline for the high temperature fluids shows the range of values measured for the mixed fluids in this study. River data is summarised in Kendall et al. (2016), Hawaii groundwater data from King et al. (2016), and the low temperature hydrothermal fluids from McManus et al. (2002). In addition, the individual sulfide values from this study are plotted (black squares) with the entire molybdenite range (from Breillat et al., 2016) for comparison. * denotes data from this study.
Fig. 2
Fig. 7

- Decrease in plagioclase dissolution
- Increase in olivine dissolution

Legend:
- Albite
- Anorthite
- CPX
- Diopside
- Fayalite
- Forsterite
- Glass
Fig. 8

δ^{98}MO_{NIST} (%)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Rivers

Groundwaters
Hawaii (4)
Mývatn* (8)
Peistareykír* (6)

Hydrothermal
Low temperature fluids
High temperature fluids*

Sulphides
Molybdenites (391)
Chalcopyrite* (2)
Pyrite* (1)
Pyrrhotite* (1)

Endmember minima
Modern seawater (43)
(Outlier) (Mean)
Table 1: Selected data for Mývatn and beistareykir groundwaters (δ²⁶⁶Mo relative to NIST=+0.25‰).

<table>
<thead>
<tr>
<th></th>
<th>Temp</th>
<th>pH*</th>
<th>Eh*</th>
<th>Na</th>
<th>Mg</th>
<th>Cl</th>
<th>H₂S</th>
<th>SO₄</th>
<th>Mo</th>
<th>δ²⁶⁶Mo</th>
<th>2SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>MÝVATN GROUNDWATERS</td>
<td></td>
</tr>
<tr>
<td>M01 Hlíðardalslækur</td>
<td>15.9</td>
<td>8.23</td>
<td>0.08</td>
<td>91.3</td>
<td>12.50</td>
<td>26.00</td>
<td>b.d.l</td>
<td>199.00</td>
<td>4.81</td>
<td>1.05 ± 0.04</td>
<td>4(2)</td>
<td></td>
</tr>
<tr>
<td>M02 AB-2</td>
<td>3.3</td>
<td>8.16</td>
<td>0.60</td>
<td>11.2</td>
<td>5.15</td>
<td>4.36</td>
<td>b.d.l</td>
<td>13.80</td>
<td>0.331</td>
<td>0.29 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M03 LUD-4</td>
<td>5.4</td>
<td>8.29</td>
<td>0.58</td>
<td>53.6</td>
<td>9.20</td>
<td>12.30</td>
<td>b.d.l</td>
<td>96.20</td>
<td>1.52</td>
<td>1.12 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M04 LUD-2</td>
<td>5.6</td>
<td>8.55</td>
<td>0.15</td>
<td>18.6</td>
<td>7.60</td>
<td>5.74</td>
<td>b.d.l</td>
<td>16.10</td>
<td>0.565</td>
<td>0.39 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M05 LUD-3</td>
<td>4.5</td>
<td>8.64</td>
<td>0.51</td>
<td>15.3</td>
<td>7.07</td>
<td>5.29</td>
<td>b.d.l</td>
<td>15.30</td>
<td>0.594</td>
<td>0.39 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M06 Svelgur</td>
<td>19.2</td>
<td>6.94</td>
<td>0.22</td>
<td>119.0</td>
<td>1.21</td>
<td>54.00</td>
<td>0.05</td>
<td>181.00</td>
<td>4.85</td>
<td>1.55 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M07 Garðsöld</td>
<td>6.5</td>
<td>8.96</td>
<td>0.10</td>
<td>17.4</td>
<td>4.64</td>
<td>2.11</td>
<td>b.d.l</td>
<td>7.33</td>
<td>0.654</td>
<td>0.47 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M08 Bjarg</td>
<td>19.0</td>
<td>8.11</td>
<td>0.56</td>
<td>44.3</td>
<td>4.02</td>
<td>9.71</td>
<td>b.d.l</td>
<td>47.10</td>
<td>0.988</td>
<td>0.47 ± 0.01</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M09 Helgavogur</td>
<td>23.3</td>
<td>8.24</td>
<td>0.19</td>
<td>52.3</td>
<td>5.56</td>
<td>8.04</td>
<td>b.d.l</td>
<td>66.20</td>
<td>0.832</td>
<td>0.72 ± 0.08</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M10 Hverfjallsjá</td>
<td>6.5</td>
<td>8.75</td>
<td>0.48</td>
<td>21.5</td>
<td>6.84</td>
<td>5.08</td>
<td>b.d.l</td>
<td>22.10</td>
<td>0.713</td>
<td>0.38 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M11 Vogaföi</td>
<td>5.0</td>
<td>8.79</td>
<td>0.56</td>
<td>21.1</td>
<td>6.26</td>
<td>4.75</td>
<td>b.d.l</td>
<td>21.20</td>
<td>0.812</td>
<td>0.33 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M12 Langivogur</td>
<td>21.5</td>
<td>8.51</td>
<td>0.47</td>
<td>76.9</td>
<td>3.64</td>
<td>15.10</td>
<td>b.d.l</td>
<td>108.00</td>
<td>0.371</td>
<td>1.06 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M13 LUD-10</td>
<td>25.3</td>
<td>8.20</td>
<td>0.21</td>
<td>37.3</td>
<td>8.57</td>
<td>4.54</td>
<td>b.d.l</td>
<td>40.50</td>
<td>1.43</td>
<td>0.62 ± 0.03</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M14 Grjótagjá</td>
<td>46.1</td>
<td>8.27</td>
<td>0.17</td>
<td>86.3</td>
<td>3.09</td>
<td>17.70</td>
<td>0.08</td>
<td>109.00</td>
<td>0.206</td>
<td>2.06 ± 0.03</td>
<td>5(2)</td>
<td></td>
</tr>
<tr>
<td>M15 Stórargjá</td>
<td>26.5</td>
<td>8.23</td>
<td>0.20</td>
<td>61.8</td>
<td>5.58</td>
<td>9.57</td>
<td>b.d.l</td>
<td>81.90</td>
<td>1.04</td>
<td>0.93 ± 0.06</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M16 Vogagjá</td>
<td>40.0</td>
<td>8.21</td>
<td>0.51</td>
<td>88.0</td>
<td>2.49</td>
<td>17.50</td>
<td>b.d.l</td>
<td>128.00</td>
<td>0.219</td>
<td>1.37 ± 0.06</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M17 Skiljustöð</td>
<td>93.2</td>
<td>8.52</td>
<td>0.16</td>
<td>250.0</td>
<td>0.01</td>
<td>81.30</td>
<td>22.4</td>
<td>232.00</td>
<td>1.4</td>
<td>1.08 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M18 AE-10</td>
<td>40.6</td>
<td>8.05</td>
<td>0.27</td>
<td>42.0</td>
<td>0.99</td>
<td>4.09</td>
<td>0.03</td>
<td>66.80</td>
<td>0.954</td>
<td>0.59 ± 0.01</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M19 LUD-5</td>
<td>4.3</td>
<td>8.68</td>
<td>0.48</td>
<td>13.6</td>
<td>6.55</td>
<td>4.88</td>
<td>b.d.l</td>
<td>10.60</td>
<td>0.579</td>
<td>0.18 ± 0.06</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M20 LUD-6</td>
<td>33.0</td>
<td>8.22</td>
<td>0.51</td>
<td>51.7</td>
<td>7.11</td>
<td>5.67</td>
<td>b.d.l</td>
<td>57.00</td>
<td>0.888</td>
<td>0.81 ± 0.08</td>
<td>5(2)</td>
<td></td>
</tr>
<tr>
<td>PEISTAREYKIR GROUNDWATERS</td>
<td></td>
</tr>
<tr>
<td>P01 Peistareykir-vatnsböl</td>
<td>15.7</td>
<td>7.15</td>
<td>0.70</td>
<td>15.2</td>
<td>5.68</td>
<td>5.81</td>
<td>b.d.l</td>
<td>14.20</td>
<td>0.176</td>
<td>0.68 ± 0.13</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P02 Peistareykir-Sæluhús</td>
<td>11.6</td>
<td>8.14</td>
<td>0.57</td>
<td>20.8</td>
<td>3.69</td>
<td>7.41</td>
<td>b.d.l</td>
<td>26.10</td>
<td>0.235</td>
<td>0.50 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P03 PR-5</td>
<td>26.6</td>
<td>8.09</td>
<td>0.58</td>
<td>20.8</td>
<td>3.68</td>
<td>7.45</td>
<td>b.d.l</td>
<td>26.20</td>
<td>0.283</td>
<td>0.47 ± 0.06</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P04 Krossdalur</td>
<td>3.4</td>
<td>8.88</td>
<td>0.52</td>
<td>9.3</td>
<td>2.67</td>
<td>8.73</td>
<td>b.d.l</td>
<td>3.50</td>
<td>0.181</td>
<td>0.00 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P05 Fjöll - lind</td>
<td>2.6</td>
<td>10.00</td>
<td>0.27</td>
<td>16.3</td>
<td>0.05</td>
<td>7.84</td>
<td>b.d.l</td>
<td>4.26</td>
<td>0.209</td>
<td>-0.08 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P06 Fjöll - vatnsböl</td>
<td>2.8</td>
<td>9.18</td>
<td>0.42</td>
<td>11.9</td>
<td>0.42</td>
<td>10.40</td>
<td>b.d.l</td>
<td>2.76</td>
<td>0.103</td>
<td>0.17 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P07 Lón</td>
<td>4.4</td>
<td>7.97</td>
<td>0.62</td>
<td>8.7</td>
<td>2.59</td>
<td>7.68</td>
<td>b.d.l</td>
<td>2.91</td>
<td>0.255</td>
<td>0.06 ± 0.10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P08 Rifós - Tangabrunnur</td>
<td>10.2</td>
<td>8.24</td>
<td>0.59</td>
<td>14.8</td>
<td>3.41</td>
<td>10.00</td>
<td>b.d.l</td>
<td>8.73</td>
<td>0.269</td>
<td>0.25 ± 0.03</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P09 PR-15</td>
<td>15.3</td>
<td>8.03</td>
<td>0.54</td>
<td>13.0</td>
<td>3.91</td>
<td>7.50</td>
<td>b.d.l</td>
<td>14.00</td>
<td>0.171</td>
<td>0.55 ± 0.12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P10 PR-8</td>
<td>2.5</td>
<td>8.40</td>
<td>0.28</td>
<td>6.9</td>
<td>1.95</td>
<td>6.95</td>
<td>0.03</td>
<td>1.71</td>
<td>0.097</td>
<td>-0.15 ± 0.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P11 PR-16</td>
<td>5.2</td>
<td>8.95</td>
<td>0.42</td>
<td>8.6</td>
<td>3.37</td>
<td>5.45</td>
<td>b.d.l</td>
<td>1.84</td>
<td>0.189</td>
<td>-0.04 ± 0.07</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

IAPSO seawater

10.8 2.34 ± 0.08 43(17)

*Calculated using PHREEQC and the minetq.v4 database (Pankhurst and Apello, 2013) at in situ temperature conditions
b.d.l. - below detection limit (0.01 ppm fpr H₂S)
Errors are reported as 2 SD of the mean when n>3 and as the 2 SD of repeat IAPSO analyses when n<3
Table 2: Selected data for basalt and sulphide samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mo (ppm)</th>
<th>δ²⁹⁸Mo (‰)</th>
<th>2 SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICELANDIC BASALT*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN09-642</td>
<td>1.007</td>
<td>-0.06 ± 0.06</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>RN09-900</td>
<td>0.242</td>
<td>-0.12 ± 0.08</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>RN09-1102</td>
<td>0.135</td>
<td>0.00 ± 0.08</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>RN09-1200</td>
<td>4.665</td>
<td>0.16 ± 0.03</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SULPHIDES, Outokummu Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279-1</td>
<td>Chalcopyrite</td>
<td>38.11</td>
<td>1.17 ± 0.03</td>
<td>4</td>
</tr>
<tr>
<td>279-8</td>
<td>Chalcopyrite</td>
<td>37.97</td>
<td>1.15 ± 0.03</td>
<td>3</td>
</tr>
<tr>
<td>279-9</td>
<td>Pyrite</td>
<td>0.074</td>
<td>1.80 ± 0.08</td>
<td>1</td>
</tr>
<tr>
<td>279-10</td>
<td>Pyrrhotite</td>
<td>0.048</td>
<td>1.46 ± 0.08</td>
<td>1</td>
</tr>
</tbody>
</table>

δ²⁹⁸Mo relative to NIST= +0.25‰

Errors are reported as 2 SD of the mean when n≥3 and as the 2 SD of repeat IAPSO analyses when n<3

*Bulk rock measurements