Title: 3H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the $\delta^{2}H$ values of plant organic compounds

Authors: Cormier M-A.a,b,*, Werner R. A.a, Sauer P. E.c, Gröcke D. R.d, Leuenberger M. C.e, Wieloch T.f, Schleucher J.f and Kahmen A.b

Affiliations:
aETH Zürich, Department of Environmental Systems Science, Universitätstrasse 2, 8092 Zürich, Switzerland.
bUniversity of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056 Basel, Switzerland.
cDepartment of Geological Sciences, Indiana University, Bloomington, IN 47405-1405, USA.
dStable Isotope Biogeochemistry Laboratory, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK.
eClimate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
fDepartment of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden.

*Corresponding author: marc-andre.cormier@usys.ethz.ch

Keywords: alkanes, cellulose, biomarker, hydrogen isotopes, plant metabolism
Abstract

- δ²H analyses of plant organic compounds have been applied to assess ecohydrological processes in the environment despite a large part of the δ²H variability observed in plant compounds not being fully elucidated.

- We present a new conceptual biochemical model based on empirical H isotope data that we generated in two complementary experiments that explains where ²H-fractionations occur in the biosynthesis of plant organic compounds and how these ²H-fractionations are tightly coupled to a plant’s carbon and energy metabolism.

- With this work, we demonstrate that information recorded in the δ²H values of plant organic compounds goes beyond hydrological signals and can also contain important information on the carbon and energy metabolism of plants. As such we provide a mechanistic basis to introduce hydrogen isotopes in plant organic compounds as new metabolic proxy for the carbon and energy metabolism of plants and ecosystems. Such a new metabolic proxy has the potential to be applied in a broad range of disciplines, including plant and ecosystem physiology, biogeochemistry and paleoecology.
Introduction

The analyses of stable isotope ratios in plant material have proven to be an indispensable tool for ecological, biogeochemical and (paleo-) climatological research (Dawson et al., 2002). Of the four most common biogenic elements, only carbon (C), oxygen (O), and nitrogen (N) isotope ratios of plant compounds are fully established as proxies for different ecological, environmental and paleoclimatological processes. In contrast, hydrogen (H) isotope ratios in plant compounds are less commonly applied.

New developments in isotope-ratio mass spectrometry for compound-specific analyses (Burgoyne & Hayes, 1998), e.g. of leaf wax lipids, and new equilibration methods (Filot et al., 2006) have, however, promoted the use of H isotopes in recent years. In particular, H isotope analyses of biomarkers such as leaf waxes have been successfully applied in paleohydrological research over the past decade and have highlighted the tremendous potential of hydrogen isotope ratios in plant-derived compounds for ecological, environmental and paleoclimatological research (Sachse et al., 2012).

Three main drivers that have been identified to determine the H isotope composition (δ^2H) in plant organic compounds are: (i) δ^2H of the plant’s water source (Chikaraishi & Naraoka, 2003; Sachse et al., 2006; Hou et al., 2008), (ii) leaf water evaporative 2H-enrichment, which is largely driven by the evaporative environment of the plant (Smith & Freeman, 2006; Feakins & Sessions, 2010a; Kahmen et al., 2013a,b), and (iii) biosynthetic 2H-fractionation (2H-ε_{bio}), which includes several different biochemical processes and corresponds to the 2H-fractionation between the biosynthetic cellular water pool and the organic compounds (Ziegler et al., 1976; Sternberg et al., 1984b; Ziegler, 1989; Yakir & DeNiro, 1990; Luo & Sternberg, 1992; Yakir, 1992; Schmidt et al., 2003).

Most biogeochemical and paleohydrological studies that have applied stable H isotopes in plant-derived biomarkers have considered 2H-ε_{bio} for any given compound to be constant within a species (e.g. Sachse et al., 2004; 2006). As such, δ^2H values in plant organic compounds are assumed to be mainly influenced by the plant’s source water δ^2H values and the evaporative 2H-enrichment of leaf water (i.e. Rach et al., 2014). The δ^2H values of e.g. leaf wax n-alkanes are thus increasingly applied as proxy for (paleo-) hydrological processes (Sachse et al., 2012). However, there are indications that 2H-
\(\varepsilon_{\text{bio}} \) can vary for a given compound within a species and that this variability is related to the C metabolism of the plant (Ziegler et al., 1976; Estep & Hoering, 1980; Yakir & DeNiro, 1990; Luo & Sternberg, 1992; Schmidt et al., 2003; Liu & Huang, 2008; Pedentchouk et al., 2008). It has been suggested that photosynthetic H isotope fractionation processes during the reduction of NADPH in the light reaction of photosynthesis and the primary assimilation of triose phosphates, and particularly post-photosynthetic \(^2\text{H}\)-fractionation processes, which correspond to all other reactions following this primary assimilation, determine \(^2\text{H}\)-\(\varepsilon_{\text{bio}} \) in plants (Roden et al., 2000). A comprehensive understanding of how variations in photosynthetic and post-photosynthetic biochemical processes determine \(^2\text{H}\)-fractionation during compound biosynthesis in plants does, however, not exist.

Here, we present new empirical data and a conceptual biochemical model that highlights how and where \(^2\text{H}\)-fractionation occurs during photosynthetic and post-photosynthetic processes in plants. The conceptual model is designed to mechanistically understand different magnitudes in \(^2\text{H}\)-\(\varepsilon_{\text{bio}} \) in different plant-derived organic compound classes and to link the variability of \(^2\text{H}\)-\(\varepsilon_{\text{bio}} \) within a given compound to metabolic processes in plants. As such, our model will provide new opportunities for the interpretation of \(\delta^2\text{H} \) values in plant-derived organic compounds and will in particular facilitate the use of \(\delta^2\text{H} \) values in plant-derived compounds to assess processes related to the carbon metabolism of plants.

We build our model on empirical H isotope data that we generated in two complementary experiments. In both experiments we tested the effects of the plant carbon metabolism on the hydrogen isotope composition of plant-derived carbohydrates and lipids by experimentally manipulating the photosynthetic carbohydrate supply to the plant. In the first experiment, we manipulated the photosynthetic carbohydrate supply to plants by limiting the CO\(_2\) that is available for the dark reaction of photosynthesis. Specifically, we grew six different vascular plant species under four different atmospheric CO\(_2\) concentrations (pCO\(_2\)) stretching from estimated glacial maximum conditions (Tripati et al., 2009) and above the photosynthetic CO\(_2\) compensation point (Krenzer & Moss, 1969; Kestler et al., 1975; Gerhart & Ward, 2010) to the averaged 2100 forecasts (Stocker et al., 2013) (i.e. 150, 280, 400 and 800 ppm). In the second experiment, we manipulated the photosynthetic
carbohydrate supply to plants by limiting the light reaction of photosynthesis and forced the plants to meet their carbohydrate demands from reserves such as starch. For this purpose, we grew six different vascular plant species, which exhibit an autotrophic carbon metabolism when grown under natural environmental conditions, from bulbs, large seeds or tubers, that contain large carbohydrate reserves for 12 weeks under four different light treatments (0, 8, 115 and 355 µmol photons m\(^{-2}\) s\(^{-1}\)).

While all H atoms in plant-derived organic compounds originate from water, photosynthetic and post-photosynthetic H isotope fractionation in plants strongly depend on the biochemical origin of H atoms during biosynthesis (Fig. 1). Three biochemical origins of H in plants are important in this respect: (i) The organic precursor molecules in a biosynthetic pathway, e.g. the H atoms of ribulose-1,5-bisphosphate that are transferred to the 2 triose phosphates (TP) synthesized in the Calvin cycle or the acetyl-CoA hydrogens in the fatty acid biosynthetic pathway (Sachse et al., 2012). (ii) Redox cofactors, e.g. the biological reducing agent nicotinamide adenine dinucleotide phosphate (NADPH), that provide an important part of the H atoms in organic compounds (Kazuki et al., 1980). (iii) The cellular water, which is incorporated into organic molecules either by H addition to sp\(^2\) hybrized-C atoms (i.e. C=C), for example by the fumarase reaction in the TCA cycle (Blanchard & Cleland, 1980), or by (partial) exchange of C-bound H atoms in CH\(_2\)-groups adjacent to CO-groups e.g. by the triosephosphate isomerase via an enolic structure in the glycolysis (Maister et al., 1976).

To identify for our model how changes in the plant’s carbon metabolism affect the biochemical origin of H in photosynthetic and post-photosynthetic biochemical processes, we analysed in our experiments the \(\delta^2\)H values of two different compound classes that differ in their biochemical pathways and thus in the contribution of H from different biochemical origins in their biosynthesis. These compound classes are carbohydrates (i.e. \(\alpha\)-cellulose) and lipids (i.e. \(n\)-alkanes).

Materials & methods
CO₂ experiment: In four climate controlled greenhouses, we grew six different C₃ plant species from seeds (i.e. two grasses: *Arrhenatherum elatius* and *Festuca rubra*; two legumes: *Trifolium pratense* and *Lathyrus pratensis*; two forbs: *Centaurea jacea* and *Plantago lanceolate*) under four atmospheric CO₂ concentrations (150, 280, 400 and 800 ppm). All the other parameters have been kept constant during the experiment (T = 20°C during day and 10°C during night, rH = 60%, LD 14:10 cycle). Plants were grown in 3 replicates. After 12 weeks, the plants were harvested and oven-dried at 50°C. Leaves were sampled at five different days during the growing experiments for leaf water extractions and conserved frozen in Exetainer vials (gas tight).

Light experiment: In four climate controlled growth chambers, four different light treatments (0, 8, 115 and 355 μmol photons m⁻² s⁻¹) were constantly applied on six different plant species (i.e. C₃ species: *Solanum tuberosum*, *Ipomoea sp.*, *Helianthus tuberosus*, *Zingiber officinale*, *Allium cepa*, and finally *Zea mays* subsp. *Mays*, a C₄ plant), while the other parameters were kept constant (T = 25°C, rH = 60%). Plants were grown in four replicates mostly from large storage organs (i.e. tubers for *Solanum tuberosum*, *Ipomoea sp.*, and *Helianthus tuberosus*, roots for *Zingiber officinale*, bulb for *Allium cepa*, and seeds for *Zea mays* subsp. *mays*) in the dark and low light treatments. After 12 weeks of growing, the plants were harvested and oven-dried at 50°C. Leaves were sampled at 11 different days during the growing experiments for leaf water extractions and conserved frozen in Exetainer vials. The environmental variables for the light and the CO₂ experiments are summarized in the tables S3 and S4.

Chemical purifications: For all specimens, leaf wax n-alkanes and α-cellulose were extracted and purified from the dried plant material. The lipids (including n-alkanes) were extracted in combusted glass vials from 1 g of dry leaves using 30 mL of a dichloromethane (DCM) : methanol mixture (9:1) under an ultrasonic bath during 15 min. Hydrocarbons (including n-alkanes) were subsequently isolated for isotope analysis from other lipids by column chromatography by eluting 10 mL hexane in 6 mL combusted glass silica-gel columns. The columns were pre-prepared by filling about three quarters (i.e. 2 g) of the column volume with silica-gel (0.040-0.063 mm, 99.5% pure). The columns were rinsed with 10 mL acetone, 10 mL DCM and 10 mL hexane and finally chemically activated in a desiccation oven at 60°C over-night. The
other lipids, including sterols and fatty acids, were eluted after the \(n \)-alkanes with a DCM : methanol mixture (9:1) and preserved for future analyses. For more details on the method see Peters et al. (2005).

For H isotope analyses on \(\alpha \)-cellulose, the cellulose was purified according to the method presented by Gaudinski et al. (2005). Briefly, about 150 mg of dry leaves was washed off from all lipids in Ankom bags by reflux in a Soxhlet apparatus with a toluene: ethanol (95%) mixture (2:1) for about 24 hrs under high heat, and then under ethanol only, until the solvent in the Soxhlet chamber was clear. Following this lipid removal, lignin was oxidised and washed away from the samples with a bleaching solution of sodium chloride and acetic acid (pH 4) under ultrasonic bath at 70\(^\circ\)C for about 24 hrs. Finally, the \(\alpha \)-cellulose was purified from holocellulose with a 15% NaOH cold solution also under ultrasonic bath.

All plant-extractable leaf water was quantitatively extracted on a cryogenic water extraction line as described in West et al. (2006) and analyzed for its \(\delta^2H \) values (see tables S1 and S2). The frequent leaf water monitoring throughout both experiments allowed us to deduce an accurate \(^2H-\varepsilon_{\text{bio}} \) for \(n \)-alkanes and \(\alpha \)-cellulose excluding the effect of leaf water evaporative \(^2H \)-enrichment as:

\[
\text{Eq. 1.} \quad ^2H - \varepsilon_{\text{bio}} = \left(1000 \cdot \left(\text{organic compound} \delta^2H + 1000 \right) / \left(\text{leaf water} \delta^2H + 1000 \right) - 1 \right)
\]

Even though heterogeneity in leaf water \(\delta^2H \) exists (Cernusak et al., 2016), we used the mean bulk leaf \(\delta^2H \) water to calculate \(^2H-\varepsilon_{\text{bio}} \) since sub-cellular leaf water \(\delta^2H \) values cannot be measured and we did not want to add additional uncertainties into our empirical data by modelling them. We decided – as typically done in the literature – to calculate the \(^2H-\varepsilon_{\text{bio}} \) as the difference between mean bulk foliar water (measured several times during the experiment) and the organic \(\delta^2H \) values (measured at the end of the experiment).

While homologous \(n \)-alkanes \(\delta^2H \) values can vary, even within a single plant (e.g. Chikaraishi & Naraoka, 2003; Magill et al., 2013), we measured \(\delta^2H \) values of the C29 \(n \)-alkane as it was the only compound abundant enough for GC-IRMS measurements that occurred in all species. To allow the comparison of treatment effects on \(^2H-\varepsilon_{\text{bio}} \)
across all six species, we standardized the 2H-ε_{bio} response of a species to its overall mean 2H-ε_{bio} in both experiments (i.e. Δ^2H-ε_{bio}).

Isotope analyses: The water δ2H values have been measured on a DeltaPlus XP isotope ratio mass spectrometer (IRMS) coupled to a high temperature conversion elemental analyzer (TC/EA) via a conFloIII (Gehre et al., 2004). Following the method described by Sessions (2006), δ2H values on n-alkanes have been measured on a second Delta V plus stable isotope ratio mass spectrometer (IRMS) coupled to a Trace GC Ultra and a GC Isolink via a ConFlow IV. The cellulose δ2H values of the non-exchangeable H atoms were measured following an equilibration of the exchangeable H atoms as described by Schimmelmann (1991), Filot et al. (2006) and Sauer et al. (2009) using a TC/EA coupled to a Delta Advantage IRMS.

Data analyses: We fitted hyperbolic functions (expressing the balance between photosynthetic and post-photosynthetic effects on Δ^2H-ε_{bio}) enhanced with linear functions (expressing the possible influence of photorespiration (Ehlers et al., 2015)) into the relationships between the independent variables we manipulated in the two experiments and Δ^2H-ε_{bio}: $\delta^2H = a + b/x + c \cdot d \cdot x/(c \cdot x + d)$, were x is either the light intensity or the pCO$_2$ values and a to d represent model-calculated parameters. At the positive end, the photosynthetic processes dominate and the inputs of new assimilates and light derived NADPH are at a maximum value and drive Δ^2H-ε_{bio} towards negative values. At the negative end, the pool of photosynthetic carbohydrate supply is low, due to little amount of, or no, new assimilates, resulting in an infinite cycling of individual compounds in this pool and driving toward positive values of Δ^2H-ε_{bio}.

Results and discussion
Both, the CO$_2$ and light limitation experiments revealed that 2H-ε_{bio} varied systematically in different compound classes in response to the photosynthetic carbohydrate supply. This indicates that changes in plant C metabolism have strong effects on 2H-fractionation during the biosynthesis of organic compounds in plants (Figs. 2 and 3).
In the first experiment, we found strong effects of pCO$_2$ on leaf water evaporative 2H-enrichment in all six CO$_2$ treated plants (Fig. 2a). The effects of pCO$_2$ on leaf water δ^2H values can be explained by the CO$_2$ sensitivity of stomatal conductance and resulting effects on the evaporative 2H-enrichment of leaf water. In the Péclet-modified Craig-Gordon model, transpiration has been shown to reduce 2H-enrichment of leaf water due to the dilution of leaf water with unenriched source water (Cernusak et al., 2016). The increase in leaf water δ^2H values at higher pCO$_2$ that we observed in our experiment can therefore be explained by reduced stomatal conductance and transpiration, resulting in a decreased Péclet effect. δ^2H values differed strongly between α-cellulose and n-alkanes and showed no unidirectional relationship with pCO$_2$ (Fig. 2b, d). Importantly, when the effects of leaf water evaporative 2H-enrichment on δ^2H values of α-cellulose and n-alkanes were accounted for by subtracting leaf water δ^2H values from δ^2H values of organic compounds (and calculating as such 2H-ε_{bio} for a given compound class and species using Eq. 1), we observed that the 2H-ε_{bio} for α-cellulose and n-alkanes was strongly affected by pCO$_2$ in all six species (Fig. S1). When the inherent species specific variability in 2H-ε_{bio} was accounted for by standardizing the treatment response of 2H-ε_{bio} for a given compound around the overall mean 2H-ε_{bio} of a species (i.e. calculating Δ^2H-ε_{bio}), it became evident that the pCO$_2$ effects on 2H-ε_{bio} were consistent in trend and magnitude across all species and for both compound classes (Fig. 2c, e). Effects were strongest at the lowest pCO$_2$ level, where we assume that the plant’s carbon metabolism became limited by photosynthetic carbohydrate supply (Drake et al., 1997). For both α-cellulose and n-alkanes, 2H-ε_{bio} at 150 ppm was 20‰ and 16‰ more positive (at probability $p<0.05$ and $p<0.001$, respectively, using F-values from two-way ANOVA) than at pre-industrial pCO$_2$ (i.e. 280 ppm). However, 2H-ε_{bio} did not become increasingly negative beyond 400 ppm pCO$_2$.

In the second experiment, we found strong effects of the available photosynthetically active radiation (PhAR) on leaf water evaporative 2H-enrichment in all six plant species (Fig. 3a). The effects of light intensity on leaf water δ^2H values can be explained by the light sensitivity of stomatal conductance and resulting effects on the evaporative 2H-enrichment of the leaf water (Cernusak et al., 2016). δ^2H values differed strongly between α-cellulose and n-alkanes and δ^2H values of both compounds showed a
negative relationship with increasing PhAR (Fig. 3b, d). When the effects of leaf water evaporative 2H-enrichment were accounted for by subtracting leaf water δ^2H values from δ^2H values of organic compounds, we found that ϵ_{bio} for α-cellulose and n-alkanes was strongly affected by light intensity in all six species (Fig. S2). The effect was greatest under fully dark conditions, when plants were completely limited in their photosynthetic carbohydrate supply and were forced to meet 100% of their carbon and energy demands from carbohydrate reserves or other organic molecules (i.e. sugars, proteins, lipids). When 2H-ϵ_{bio} responses were standardized (i.e. Δ^2H-ϵ_{bio}) across species to allow comparison of the treatment effects across species, we detected that the treatment responses in Δ^2H-ϵ_{bio} were remarkably consistent in direction and magnitude across species but differed in magnitude between the two compound classes (Fig 3c, e). In full dark, Δ^2H-ϵ_{bio} for α-cellulose and n-alkanes was more positive than Δ^2H-ϵ_{bio} of plants that grew under light (Fig. 3c, e). For α-cellulose and n-alkanes, Δ^2H-ϵ_{bio} at 0 PhAR was 22‰ and 43‰ more positive (p<0.05 and p<0.001, respectively) than at higher PhAR (i.e. 354 µmol m$^{-2}$ s$^{-1}$). However, 2H-ϵ_{bio} did not become increasingly negative beyond 115 µmol m$^{-2}$ s$^{-1}$ in either compound class.

Yakir & DeNiro (1990) and later Luo & Sternberg (1992) have previously shown that cellulose δ^2H values increase when a plant’s carbon metabolism was forced into a state of low photosynthetic carbohydrate supply. We show here, that these effects are relevant not only for cellulose but also for other compound classes such as lipids but that the magnitude by which the plant’s carbon metabolism affects 2H-ϵ_{bio} differed for compound classes and was dependent on the treatment (Figs. 2 and 3). This indicates that different biochemical 2H-fractionation processes determine not only 2H-ϵ_{bio} in different compound classes but that these different biochemical 2H-fractionation processes are differently affected by changes in the plant’s carbon metabolism. This in turn provides us with the opportunity to establish - based on the known biochemical pathways - a conceptual biochemical model that identifies how and where H isotope fractionations occur during the biosynthesis of different plant compounds and to conceptualize how changes in a plant’s carbon metabolism affect the 2H-fractionations for a given compound (Fig. 4).
Photosynthetic 2H-fractionation: Photosynthetic 2H-fractionation occurs in the chloroplast during the light reaction of photosynthesis where ferredoxin-NADP$^+$ reductase produces NADPH with reduced H that is strongly 2H-depleted compared to leaf water (Luo et al., 1991). This 2H-depleted H pool in NADPH is subsequently introduced into organic compounds in the Calvin cycle to form a glyceraldehyde-3-phosphate (GAP) that will be 3H-depleted compared to leaf water and form a major constituent of the triosephosphate (TP) pool (Fig. 4). To our knowledge, the only attempt to estimate the magnitude of photosynthetic 2H-fractionation was by Yakir & DeNiro (1990), who calculated a value of -171‰ for cellulose in the aquatic plant *Lemna gibba*. While our experiments were not designed to isolate the magnitude of the photosynthetic component of 2H-ε_{bio}, we found that variations in PhAR above 115 μmol m$^{-2}$ s$^{-1}$ did not affect 2H-ε_{bio} of α-cellulose and n-alkanes in any of the six species that we investigated. This is the case even though net photosynthetic rates increased with increasing light intensity in all species (Fig S3). We thus conclude that photosynthetic 2H-fractionation is, for the light spectrum tested, independent of the rate of photosynthesis within a species and possibly stable for any given species. This finding is important as it suggests that variations in 2H-ε_{bio} in response to plant metabolic changes observed in this study are mainly the result of variations in post-photosynthetic H isotope fractionations.

Effects of post-photosynthetic 2H-fractionation on δ^2H values of different compound classes: Irrespective of the treatment, we found α-cellulose in both experiments to be less 2H-depleted compared to leaf water than lipids (Figs. 2 and 3). This was for all species when these were grown at sufficient photosynthetic carbohydrate supply rates, i.e. at $pCO_2 \geq 280$ ppm or a light intensity of ≥ 8 μmol photon m$^{-2}$ s$^{-1}$. This is consistent with previous studies that have reported similar patterns for cellulose or starch (Epstein et al., 1976; Sternberg et al., 1984a). Given the strong 2H-depletion during photosynthetic H isotopes fractionation processes (Yakir & DeNiro, 1990), these values suggest that post-photosynthetic 2H-fractionations have a strong effect on the observed δ^2H values of carbohydrates in plants.

Post-photosynthetic 2H-enrichment commences in the TP pool that is in rapid reciprocal exchange with the hexosephosphate (HP) pool in a futile cycle from which
carbohydrates are synthesized (Buchanan et al., 2015) (Fig. 4). Several processes can lead to the post-photosynthetic 2H-enrichment of the TP and HP pools as outlined in our conceptual model (Fig. 1 and 4): (i) The synthesis of GAP in the Calvin cycle allows (partial) exchange of C-bound H atoms with the surrounding (3H-enriched) cellular water in CH$_2$-groups adjacent to CO-groups via an enolic structure (Rieder & Rose, 1959; Maister et al., 1976; Knowles & Albery, 1977), leading to an 2H-enrichment of the GAP pool. Wang et al. (2009) have calculated a theoretical equilibrium fractionation of organic H for H-C-OH positions up to 96‰, illustrating that C-bound 2H exchange with water can drive GAP and consequently carbohydrates towards positive δ^2H values. (ii) In new photosynthetically derived GAP, only one out of four C-bound H atoms is derived from 2H-depleted NADPH from the light reaction of photosynthesis. The other C-bound H atoms are coming from the precursor molecule 3-phosphoglyceraldehyde (3-PGA) that is 3H-enriched compared to NADPH because of previous H exchanges with cellular water as described above. (iii) During the production of HP, where two trioses are bound to form fructose 1,6-bisphosphate, one out of four C-bound H atoms is lost to the surrounding water (Rose & Rieder, 1958; Hall et al., 1999). As light isotopologues will react faster in this reaction, this process leads to a 2H-enrichment of the GAP pool (Schmidt et al., 2015). (iv) The enzyme phosphoglucose isomerase used to interconvert glucose 6-phosphate and fructose 6-phosphate might 3H-enrich the HP pool even further during that step by allowing partial exchange of specific H atoms (Fig. 1) with the surrounding cellular water (Schleucher et al., 1999).

As a consequence of the different post-photosynthetic 2H-fractionation processes that lead to a 2H-enrichment of the TP and the HP pool, carbohydrates typically do not deviate as strongly in their δ^2H values from leaf water as we would expect from the primary 2H-depletion of the NADPH pool that is generated in the light reaction of photosynthesis. While the above-described mechanisms are relevant for all carbohydrates, δ^2H values can vary among different carbohydrates. Previous studies have for example shown that starch is 2H-depleted compared to cellulose (Smith & Epstein, 1970; Luo & Sternberg, 1991) and compared to leaf soluble sugars (Schleucher et al., 1999). This has been attributed to a 2H-depletion at position C2 caused by the pronounced disequilibrium of phosphoglucose isomerase (Schleucher et al., 1999). Analogous 3H-depletion at the same position was found by Dorrer et al. (1966).
n-Alkanes and lipids in general had more negative $^2\text{H-}_\text{bio}$ than α-cellulose in our and in previous studies (Smith & Epstein, 1970; White, 1989; Schmidt et al., 2003). This is despite the fact that the precursor molecule in lipid biosynthesis, phosphoenolpyruvate (PEP) and eventually acetyl-CoA, are originating from the same ^2H-enriched TP pools, as the precursor molecules of carbohydrates (Buchanan et al., 2015). In addition, the metabolic conversion of GAP to organic acids (i.e. PEP, pyruvate and malate) and from organic acids to acetyl-CoA involves the loss of ^2H-depleted H to nicotinamide adenine dinucleotide (NADH) and NADPH during glycolysis and loss of ^2H-depleted hydrogen in form of NADH, flavin adenine dinucleotide (FADH$_2$), and in some cases NADPH, that occurs in the tricarboxylic acid (TCA) cycle (Rambeck & Bassham, 1973; Møller & Rasmusson, 1998; Igamberdiev & Gardeström, 2003; White et al., 2012). Also, during the conversion of organic acids to acetyl-CoA and in the TCA cycle exchange of C-bound H atoms with surrounding ^2H-enriched water occurs (Rambeck & Bassham, 1973; Silverman, 2002; Allen et al., 2015). Organic acids as the precursor molecules of lipids should thus be more ^2H-enriched than molecules in the TP pool. This is, however, not reflected in lipids because ^2H-depleted NADPH is a critical source of H in their biosynthesis. In carbohydrates, approximately 15% of C-bound H atoms originate from ^2H-depleted NADPH that is produced during the light reaction of photosynthesis in the chloroplast and by the oxPPP in the cytosol (Fig. 1). In contrast, about half of the C-bound H atoms originate from ^2H-depleted NADPH in the autotrophic fatty acid and n-alkane biosynthesis (Kazuki et al., 1980; Baillif et al., 2009) (Fig. 5). As such, lipids in general and n-alkanes in particular are strongly ^2H-depleted compared to carbohydrates in autotrophically growing plants.

Metabolic effects on post-photosynthetic ^2H-fractionation: Our experiments revealed that plants that were forced into a state of low photosynthetic carbohydrate supply, whether by light or by CO$_2$ limitation, have $^2\text{H-}_\text{bio}$ values for α-cellulose and n-alkanes that are significantly less negative than those of plants growing under higher photosynthetic carbohydrate supply. The general trend of this effect was consistent in the two experiments and suggests that the post-photosynthetic ^2H-fractionation processes described in detail below lead to more positive ^2H values when plants operate in a state of low photosynthetic carbohydrate supply (Luo & Sternberg, 1992; Yakir, 1992).
We identified two important post-photosynthetic biochemical processes that are responsible for the general 2H-enrichment of plant metabolites under low photosynthetic carbohydrate supply (see Fig. 4).

(I) We assume that a substrate-limited Calvin cycle as induced by our two experiments results in smaller TP and HP pools and consequently a higher turnover of the individual molecules in a pool at a given metabolic rate. We suggest that higher turnover rates of individual molecules in the TP and HP pools lead to increasing 2H-enrichment because the likelihood of equilibrium exchange of C-bound H in the TP and HP molecules with 2H-enriched cellular water increases (Luo & Sternberg, 1992; Augusti et al., 2006). Similar processes have been suggested for the exchange of O atoms during the biosynthesis of cellulose (Yakir & DeNiro, 1990; Hill et al., 1995; Sternberg et al., 2003; Barbour, 2007). While two out of six C-bound H atoms on a glucose-6-phosphate (i.e. C2 & C3) are always exchanged with the surrounding cellular water during the biosynthesis from ribulose-1,5-bisphosphate, the two C-bound H atoms on position C4 and C5 are only partially exchanged with the surrounding water (Rose & Rieder, 1958; Rieder & Rose, 1959; Fiedler et al., 1967; Maister et al., 1976; Knowles & Albery, 1977) (Fig. 1). A higher cycling rate of these molecules increases thus the chance for equilibration to happen on positions C4 and C5 with the surrounding 2H-enriched cellular water. This in turn will lead to a 2H-enrichment of the molecules in the TP and HP pool when photosynthetic carbohydrate supply is low.

(II) Sharkey & Weise (2015) postulate that at low photosynthetic carbohydrate supplies, the Calvin cycle is stabilized by means of the oxPPP replenishing the Calvin cycle intermediates with starch-derived pentose phosphates. Although starch is 2H depleted, the first enzyme of the oxPPP (glucose-6-phosphate dehydrogenase) has been shown to strongly 2H-enriched glucose-6-phosphate at C1 (Hermes et al., 1982). This will lead to 2H-enrichment in glucose-6-phosphate and derivatives synthesized thereof when the oxPPP is upregulated (Wieloch et al., unpublished). Rearrangement of the photosynthetic carbohydrate metabolism in response to low photosynthetic carbohydrate supply might also induce a shift of stromal phosphoglucose isomerase towards equilibrium (Schleucher et al., 1999). This would result in the biosynthesis of 2H-enriched transitory starch with downstream carbohydrates produced from the degradation of this starch also being 2H-enriched (Wieloch et al., unpublished).
In essence it is a combination of different biochemical processes that act in concert and lead to plant organic compounds becoming 2H-enriched when photosynthetic carbohydrate supply to a plant’s metabolism is low.

Interestingly, metabolic effects on 2H-ϵ_{bio} values for α-cellulose were identical in both experiments. In contrast, effects on 2H-ϵ_{bio} values for n-alkanes were much stronger when photosynthetic carbohydrate supply was reduced via the light reaction and plants were forced to utilize reserve carbohydrates as compared to photosynthetic carbohydrate supply being reduced via low pCO$_2$ and a limitation of the dark reaction of photosynthesis (Figs. 2 and 3). These observations are in line with the conceptual biochemical model for metabolic effects on the hydrogen isotope composition of plant organic compounds that we outlined above and can thus be used to validate our above considerations. Under low pCO$_2$ and under low light the biochemical source of H in the biosynthesis of carbohydrates is identical and comes from precursor molecules such as transitory or reserve starch that is converted to TP and HP that become 2H-enriched under low photosynthetic carbohydrate supply (Fig. 1, 4). In contrast, the main source of H in lipids comes directly from NADPH (Fig. 1, 5). As the supplies of NADPH and the hydrogen isotope composition of NADPH from the light reaction of photosynthesis should not have been affected by our low pCO$_2$ treatment, the main H-source of lipids was consequently also unaffected by the CO$_2$ treatments. This explains why effects of low photosynthetic carbohydrate supplies triggered by low pCO$_2$ were comparatively small for 2H-ϵ_{bio} of n-alkanes (Fig. 3c, e). In contrast, the metabolic effects on 2H-ϵ_{bio} were stronger for n-alkanes when photosynthetic carbohydrate supplies were manipulated by low light and plants depended entirely on reserve metabolites for the biosynthesis of new organic compounds. The reason for this is that the biosynthesis of lipids from reserve carbohydrates via organic acids and acetyl-CoA requires additional NADPH-derived H (Figs. 4 and 5). In the absence of light this H cannot come from NADPH produced in the light reaction of photosynthesis but needs to be derived from NADPH that is generated heterotrophically, mainly in the oxPPP, and that has been shown to be 2H-enriched compared to autotrophically reduced NADPH (Sessions et al., 1999; Zhang et al., 2009; Schmidt et al., 2015). This suggests that in addition to the 2H-enrichment of the biochemical precursor pools driven by the biochemical processes outlined above, the incorporation of additional and heterotrophically produced 2H-
enriched NADPH, leads to larger metabolic effects on 2H-εbio of lipids when photosynthetic carbohydrate supplies are limited by the light reaction of photosynthesis.

We found no effects of increasing pCO$_2 \geq 280$ ppm on 2H-εbio in either compound class. We suggest that this is because the size of the carbohydrate pools and/or the turnover of the molecules in the pools was constant at pCO$_2 \geq 280$ ppm in our experiment. It has been shown previously that the activity of RuBisCO is down-regulated with the accumulation of soluble carbohydrates in the chloroplast or cytosol (Webber et al., 1994). We thus suggest that at pCO$_2 \geq 280$ ppm the carbohydrate pool size was not increasing enough in our experiment to significantly affect 2H-εbio of α-cellulose or n-alkanes. Similarly, we did not observe strong effects on 2H-εbio above 5 μmol photons m$^{-2}$ s$^{-1}$ for n-alkanes and above 115 μmol photons m$^{-2}$ s$^{-1}$ for α-cellulose. This indicates that plants were already carbon autonomous with respect to the supply of fresh carbohydrates from photosynthesis or that the main source of NADPH in the biosynthesis of the compounds was coming from the light reaction of photosynthesis above these light intensities rather than from the degradation of the reserves via the oxPPP.

Effects of photorespiration: It has recently been shown that photorespiration can 2H-deplete the C-3 position of the 3-PGA (i.e. triose) (Ehlers et al., 2015). Photorespiration occurs because RuBisCO can also catalyze the oxygenation of ribulose-1,5-bisphosphate (RubP), a reaction that increases with declining CO$_2$ concentrations (Bainbridge et al., 1995). This isotope effect of photorespiration should thus lead to 2H-εbio becoming progressively more negative at lower CO$_2$ concentrations, where rates of photorespiration increase. An effect of photorespiration on 2H-εbio of α-cellulose and n-alkanes was, however, not detectable in our CO$_2$ experiment. As indicated in our model, photorespiration seems to introduce 2H-depleted H at the C-3 position of 3-PGA due to the introduction of 2H-depleted H atoms via the reaction ferredoxin glutamine:oxoglutarate aminotransferase during the photorespiratory pathways (Peterhansel et al., 2010) (Fig. 4). This 2H-depleted C-3 position, which is transferred to other positions without H isotope exchange during glucose and n-alkane biosynthesis (Fig. 1 and 5), can affect up to 1 out of 7 and 9 out of 59 C-bound H atoms in a glucose
and in a C29-alkane molecule, respectively at high rates of photorespiration (Ehlers et al., 2015). It seems that these effects are too small to be detected in the δ2H values of organic compounds or that the H isotopic changes associated with the cycling of the TP and HP pool and with the source of NADPH mask those of the photorespiration for α-cellulose and n-alkanes.

Effects of gluconeogenesis: Plants growing at low photosynthetic carbohydrate supply can utilize not only starch reserves as illustrated in our model but also lipid reserves to serve as C and energy source for the biosynthesis of compounds via gluconeogenesis. This is particularly relevant for plants growing from oil containing seeds. Luo & Sternberg (1992) have shown that plants growing from low photosynthetic supply from carbohydrate reserves (i.e. starch) have cellulose δ2H values that are lower than plants growing from lipids. In plants with low photosynthetic carbohydrate supply that utilize lipids as their C and energy source, an important part of the precursor molecules for the production of new carbohydrates and lipids is acetyl-CoA, which is produced as a degradation product of the lipid β-oxidation that occurs via gluconeogenesis (Fig. 4). This important metabolic pathway results in a 2H-enrichment of the acetyl-CoA pool by producing 2H-depleted FADH2 and NADH. Moreover, the action of enoyl CoA hydratase allows the exchange of C-bound H atoms with the surrounding 2H-enriched foliar water. In the subsequent glyoxalate cycle, where two acetyl-CoA are used to produce succinate that will enter the TCA cycle and produce a new PEP, malate dehydrogenase will further 2H-enrich the pool of succinate by producing 2H-depleted NADH. As a result, carbohydrates produced by plants from lipid reserves are 2H-enriched compared to carbohydrates that are produced from carbohydrate reserves (Agrawal & Canvin, 1971).

Post-photosynthetic 2H-fractionation in plants with different photosynthetic pathways: Differences in δ2H values of organic compounds have also been observed among plants that differ in their photosynthetic pathways (e.g. C3, C4 and Crassulacean Acid Metabolism (CAM)) (Sternberg et al., 1984a; Chikaraishi et al., 2004; Smith & Freeman, 2006; Feakins & Sessions, 2010a; Zhou et al., 2011; Sachse et al., 2012; Gamarra et al., 2016). Specifically, carbohydrates and lipids in C4 plants have generally been reported to be 2H-enriched compared to those produced in C3 plants. As suggested
by (Zhou et al., 2016), the different anatomies of C\textsubscript{3} and C\textsubscript{4} plants influence 2H-\textsubscript{bio} via C-bound H exchanges with water of different anatomical compartments. For instance, intermediate compounds in C\textsubscript{4} plants exchange C-bound H with waters of the mesophyll cells that is 2H-enriched compared to water in the bundle sheath cells, contributing to organic molecules that are 2H-enriched compared to those produced by C\textsubscript{3} plants. This is in particular since the water in the mesophyll cells in C\textsubscript{4} plants should to be 2H-enriched compared to the bulk leaf water values of C\textsubscript{3} plants (Gamarra et al., 2016). Interestingly, our experimental treatments in the second experiment (where we included a C\textsubscript{4} plant Zea mays) show similar effects on 2H-\textsubscript{bio} of the C\textsubscript{4} plant than on the other investigated C\textsubscript{3} species (Fig S1). This suggests that metabolic effects of low photosynthetic carbohydrate supply on the 2H-\textsubscript{bio} of plant organic compounds are valid for plants with different photosynthetic pathways and that the \(\delta^2\text{H}\) values of those plants equally record a low photosynthetic carbohydrate supply and/or a fast cycling of molecules in the TP and HP pools.

2H-enrichment of organic compounds from CAM plants compared to organic compounds from C\textsubscript{3} plants that have been reported in the literature also agree with our conceptual model (Ziegler et al., 1976; Feakins & Sessions, 2010b; Sachse et al., 2012). During the day, when CAM plants release CO\textsubscript{2} via NAD(P)-malic enzyme (ME) from the malic acid and perform photosynthesis by using this CO\textsubscript{2}, the resulting C\textsubscript{3} compounds are used to produce starch via the same biosynthetic pathway, i.e. the gluconeogenesis, that is used after lipid degradation in regular C\textsubscript{3} plants. This mechanism leads to an intense cycling of malic acid and pyruvate and consequently a 2H-enrichment of the involved molecules that ultimately lead to the TP and organic acid pool in the cytosol (Fig. 4). Interestingly, Sternberg et al. (1984a) observed that the cellulose produced by CAM plants is 2H-enriched compared to lipids produced by the same plants. This is in agreement with our model and supports the idea that the cycling of organic precursors pools (such as pyruvate and malic acid or hexose and triose) and the extraction of light H via the reduction of NAD(P)+ is an important driver for the 2H-\textsubscript{bio} of carbohydrates. This cycling seems to be a less important driver of the 2H-\textsubscript{bio} in lipids biosynthesis as their main source of H comes from the NADPH produced in the chloroplast (Fig. 4).
2H as a proxy for the C metabolism of plants: The motivation of our study was to identify how and where 2H-fractionation occurs during photosynthetic and post-photosynthetic biosynthetic processes in plants. With this, we want to provide a mechanistic basis for understanding differences in 2H-εbio for different compound classes in plants and, most importantly, to set the mechanistic ground for the application of plant δ2H values as proxy for a plant’s C metabolism. Our experiments show substantial differences in the δ2H values of carbohydrates and lipids that can largely be explained by the higher proportion of NADPH-derived and 2H-depleted H in lipids compared to carbohydrates. We show strong effects of low photosynthetic carbohydrate supply on the biosynthetic hydrogen isotope fractionation for both, carbohydrates and lipids. For carbohydrates, the metabolic effects on 2H-εbio were independent of the causes of low carbohydrate supply to the plant and were surprisingly robust across species and compound classes. For lipids, effects were stronger when plants were forced to utilize reserve carbohydrates in their metabolism and to generate NADPH for the biosynthesis of lipids via heterotrophic pathways.

Being able to interpret metabolic variability in the δ2H values of plant organic compounds that is beyond hydrological forcing will help to resolve previously explained variability in the δ2H values of plant organic compounds in sediment records or in tree rings when these are applied as a (paleo-)hydrological signals. Most importantly, however, understanding the metabolic effects that shape the δ2H values of plant organic compounds will open new opportunities to utilize plant δ2H values to address the carbon metabolism of plants and ecosystems. While we show here, that photosynthetic carbohydrate supply has a key effect on the δ2H values of plant organic compounds, previous studies have already employed δ2H values of n-alkanes or cellulose to indicate the carbon autonomy of plant tissues, plant organs or entire plants (Gamarra & Kahmen, 2015; Newberry et al., 2015; Kimak et al., 2015; Gebauer et al., 2016). With our conceptual biochemical model, we can now explain why organic compounds in non-C autonomous tissue with low photosynthetic carbohydrate supplies become 2H-enriched. By comparing effects on carbohydrates and lipids, we can even differentiate if limitations of the light or dark reaction cause plant tissue to be carbon limited.
The model we present here will be particularly instrumental to interpret non-hydrological signals in δ²H values of plant organic compounds when these are analysed in combination with δ¹⁸O values. This is, because δ¹⁸O values are driven only by hydrological drivers (source water δ¹⁸O and leaf water δ¹⁸O (Roden et al., 2000; Kahmen et al., 2011) and the combined analysis of δ²H and δ¹⁸O values should thus allow to disentangle hydrological and metabolic effects, e.g. in tree ring or sediment records. Such an application of δ²H values in plant organic compounds could allow for the first time to assess long-term metabolic responses of plants and ecosystems to global environmental change and to address important feedbacks between the coupled climate carbon cycle. While a quantitative link between a plants carbon metabolism and variability in the δ²H values will have to be established in future studies, the experiments that we present here, and the conceptual biochemical model that resulted from these experiments, set the foundation for establishing plant δ²H values as a fundamentally important new metabolic proxy that will be relevant for a broad range of disciplines, including plant physiology, plant breeding, ecology, biogeochemistry, paleoecology and earth system sciences.

Acknowledgement

M.A.C. and A.K. were both funded by the ERC starting grant COSIWAX (ERC-2011-StG Grant Agreement No. 279518) to A.K. We thank Rolf Siegwolf (PSI) and Adam Kimak (Bern) for their help with the cellulose extractions and measurements.

References

crystal structure of *Escherichia coli* class II fructose-1,6-bisphosphate aldolase in complex with phosphoglyceraldehyde-dehydrogenase reveals details of mechanism and specificity. *Journal of Molecular Biology* **287**: 383–394.

Igamberdiev AU, Gardeström P. 2003. Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1606**: 117–125.

Kazuki S, Akihiko K, Shigenobu O, Yousuke S, Tamio Y. 1980. Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotinamide nucleotides into fatty acids with the *Escherichia coli* fatty acid synthetase system. *Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism* **618**: 202–213.

Sharkey TD, Weise SE. 2016. The glucose 6-phosphate shunt around the Calvin–

Smith FA, Freeman KH. 2006. Influence of physiology and climate on δD of leaf wax n-alkanes from C_{3} and C_{4} grasses. *Geochimica et Cosmochimica Acta* **70**: 1172–1187.

White D, Drummond JT, Fuqua C. 2012. *The Physiology and Biochemistry of Prokaryotes.* Oxford University Press, USA.

Fig. 1. Different biochemical origins of H atoms in the biosynthesis of plant organic compounds. We illustrate the different biochemical pathways that contribute to the formation of glucose and similar processes. The black H are coming from the precursor ribulose-1,5-bisphosphate, blue H are coming from the surrounding water, and green H are originating from NADPH. * means that half of H atoms at this position are coming from the cellular water, the rest are from the precursor molecule. Waves represent H atoms that partially exchange with surrounding water through H addition to sp² hybridized-C atoms (i.e. C=C) or by (partial) exchange of C-bound H atoms in CH₂-groups adjacent to CO-groups.

Key enzymes and molecules are indicated by their following abbreviations: 3-PGA, 3-phosphoglycerate; ALD, aldolase; DHAP, dihydroxyacetone phosphate; FBPase, fructose 1,6-biphosphatase; FBP, fructose 6-phosphate; GAP, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NADP⁺, nicotinamide adenine dinucleotide phosphate; PGI, phosphoglucoisomerase; PGK, phosphoglycerate kinase; PRP, photorespiratory pathway; RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; TPI, triosephosphate isomerase. The red H represent the ³H-depleted atoms that can come from the 3-phosphoglycerate produced upon the photosynthetic C oxidation during photorespiration (Rieder & Rose, 1959; Knowles & Albery, 1977; Schleucher et al., 1999; Augusti et al., 2006; Buchanan et al., 2015).

Fig. 2. Leaf water, α-cellulose, n-alkane δ²H values and Δ²H-εbio for α-cellulose and n-alkanes under different pCO₂ averaged across all six species. The magnitude of ³H-εbio can differ largely across different species. To allow the comparison of treatment effects on ³H-εbio across all six species we standardized the ³H-εbio response of a species to the pCO₂ treatment around its overall mean ³H-εbio in the experiment (i.e. Δ²H-εbio). Each point corresponds to the averaged values 6 different species (n=6) grown in 3 replicates from seeds under the different pCO₂. The ³H-εbio curves for individual species are available of Fig. S1.

Fig. 3. Leaf water, α-cellulose, n-alkane δ²H values and the corresponding relative ³H-εbio for α-cellulose and n-alkanes under different light intensities (photosynthetic active radiation, PhAR) averaged across all six species. The magnitude of ³H-εbio can differ largely across different species. To allow the comparison of treatment effects on ³H-εbio across all six species we standardized the ³H-εbio response of a species to the light treatment around its overall mean ³H-εbio in the experiment (i.e. Δ²H-εbio). Each point corresponds to the averaged values 6 different species (n=6) grown in 3 replicates from the tuber or roots under the different light intensity. The ³H-εbio curves for individual species are available of Fig. S2.

Fig. 4. Schematic view of H flow during processes leading to n-alkanes and α-cellulose ³H-εbio. The key enzymes and pathways responsible for H flow are indicated by their following abbreviations and are based on known biochemical pathways (Rose & Rieder, 1958; Rieder & Rose, 1959; Knowles & Albery, 1977; Cheesbrough & Kolattukudy, 1984; Schleucher et al., 1999; Heldt et al., 2005; Augusti et al., 2006; Zhang et al., 2009; Schirmer et al., 2010; Voet & Voet, 2011; Buchanan et al., 2015; Ehlers et al., 2015). The Roman numerals indicate the two main post-photosynthetic biochemical processes that we suggest to be responsible for the general enrichment of plant metabolites under low photosynthetic carbohydrate supply: 2-OGDH, 2-oxoglutarate dehydrogenase; GAP, 6-phosphogluconate dehydrogenase; ACP, acyl-carrier-protein; ALD, aldolase; ENO, enolase; Fd-GOGAT, ferredoxin glutamine:oxoglutarate aminotransferase; FNR, ferredoxin-NADP⁺ reductase; G6PDH, glucose-6-phosphate dehydrogenase; GAP, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IDH, isocitrate dehydrogenase; KA, ketoacetyl; ME, malic enzyme; NADP⁺, nicotinamide adenine dinucleotide phosphate; ME, malate dehydrogenase; PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; PGI, phosphoglucone isomerase; PK, pyruvate kinase; oxPPP, oxidative pentose phosphate pathway; TPI, triosephosphate isomerase; TE, trans-enzyme; TPT, triose phosphate translocator; R, reductase; RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase. Succinate dehydrogenase also produced FADH₂ in the TCA cycle, but is not represented on the scheme.

Fig. 5. Simplified view of the biochemical origins of H atoms in n-alkane biosynthesis. Black H represent H atoms from the precursor acetyl-CoA. Green H originate from NADPH reduced by the light reaction of photosynthesis in the chloroplast and or by oxPPP and other reactions in the endoplasmic reticulum. Blue H are from H atoms in equilibrium with surrounding water. The fatty acids are generally elongated...
until 16 or 18 Cs long in the chloroplast and until 32 Cs long in the endoplasmic reticulum; this might also imply different H sourcing (Cheesbrough & Kolattukudy, 1984; Zhang et al., 2009; Schirmer et al., 2010; Buchanan et al., 2015). The red H represent the ²H-depleted atoms that can come from the 3-phosphoglycerate produced upon the photosynthetic C oxidation. In a C29-alkane, of 60 H atoms, 28 comes from NADPH, 14 from water, 17 from manoyl-ACP (which ultimately derives from acetyl-CoA and pyruvate).
Fig. 1. Different biochemical origins of H atoms in the biosynthesis of plant organic compounds. We illustrate the different origins for the biosynthesis of glucose but similar processes occur in all biochemical pathways. Black H are coming from the precursor ribulose-1,5-bisphosphate, blue H are coming from the surrounding water, green H are originating from NADPH. * means that half of H atoms at this position are coming from the cellular water, the rest are from the precursor molecule. Waves represent H atoms that partially exchange with surrounding water through H addition to sp2 hybridized-C atoms (i.e. C═C) or by (partial) exchange of C-bound H atoms in CH₂-groups adjacent to CO-groups. Key enzymes and molecules are indicated by their following abbreviations: 3-PGA, 3-phosphoglycerate; ALD, aldolase; DHAP, dihydroxyacetone phosphate; FBPase, fructose 1,6-bisphosphatase; FBP, fructose 1,6-bisphosphate; F6P, fructose 6-phosphate; GAP, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NADP⁺, nicotinamide adenine dinucleotide phosphate; PGI, phosphoglucone isomerase; PGK, phosphoglycerate kinase; PRP, photorespiratory pathway; RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; TPI, triosephosphate isomerase. The red H represent the ²H-depleted atoms that can come from the 3-phosphoglycerate produced upon the photosynthetic C oxidation during photorespiration (Rieder & Rose, 1959; Knowles & Albery, 1977; Schleucher et al., 1999; Augusti et al., 2006; Buchanan et al., 2015)
Fig. 2. Leaf water, α-cellulose, n-alkane δ²H values and Δ²H-εbio for α-cellulose and n-alkanes under different pCO₂ averaged across all six species. The magnitude of δ²H-εbio can differ largely across different species. To allow the comparison of treatment effects on δ²H-εbio across all six species we standardized the δ²H-εbio response of a species to the pCO₂ treatment around its overall mean δ²H-εbio in the experiment (i.e. Δ²H-εbio).

Each point corresponds to the averaged values 6 different species (n=6) grown in 3 replicates from seeds under the different pCO₂. The δ²H-εbio curves for individual species are available of Fig. S1.
Fig. 3. Leaf water, α-cellulose, n-alkane δ²H values and the corresponding relative δ²H-εbio for α-cellulose and n-alkanes under different light intensities (photosynthetic active radiation, PhAR) averaged across all six species. The magnitude of δ²H-εbio can differ largely across different species. To allow the comparison of treatment effects on δ²H-εbio across all six species we standardized the δ²H-εbio response of a species to the light treatment around its overall mean δ²H-εbio in the experiment (i.e. Δ²H-εbio). Each point corresponds to the averaged values 6 different species (n=6) grown in 3 replicates from the tuber or roots under the different light intensity. The δ²H-εbio curves for individual species are available of Fig. S2.
Fig. 4. Schematic view of H flow during processes leading to n-alkanes and α-cellulose 2H-εbio. The key enzymes and pathways responsible for H flow are indicated by their following abbreviations and are based on known biochemical pathways (Rose & Rieder, 1958; Rieder & Rose, 1959; Knowles & Albery, 1977; Cheesbrough & Kolattukudy, 1984; Schleucher et al., 1999; Heldt et al., 2005; Augusti et al., 2006; Zhang et al., 2009; Schirmer et al., 2010; Voet & Voet, 2011; Buchanan et al., 2015; Ehlers et al., 2015). The Roman numerals indicate the two main post-photosynthetic biochemical processes that we suggest to be responsible for the general 2H-enrichment of plant metabolites under low photosynthetic carbohydrate supply: 2-OGDH, 2-oxoglutarate dehydrogenase; 6PGD, 6-phosphogluconate dehydrogenase; ACP, acyl-carrier-protein; ALD, aldolase; ENO, enolase; Fd-GOGAT, ferredoxin glutamine:oxoglutarate aminotransferase; FNR, ferredoxin-NADP$^+$ reductase; G6PDH, glucose-6-phosphate dehydrogenase; GAP, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IDH, isocitrate dehydrogenase; KA, ketoacyl; ME, malic enzyme; NADP, nicotinamide adenine dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate; ME, malate dehydrogenase; PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; PGI, phosphoglucone isomerase; PK, pyruvate kinase; oxPPP, oxidative pentose phosphate pathway; TPI, triosephosphate isomerase; TE, trans-enoyl; TPT, triose phosphate translocator; R, reductase; RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase. Succinate dehydrogenase also produced FADH$_2$ in the TCA cycle, but is not represented on the scheme.
Fig. 5. Simplified view of the biochemical origins of H atoms in n-alkane biosynthesis. Black H represent H atoms from the precursor acetyl-CoA. Green H originate from NADPH reduced by the light reaction of photosynthesis in the chloroplast and or by oxPPP and other reactions in the endoplasmic reticulum. Blue H are from H atoms in equilibrium with surrounding water. The fatty acids are generally elongated until 16 or 18 Cs long in the chloroplast and until 32 Cs long in the endoplasmic reticulum; this might also imply different H sourcing (Cheesbrough & Kolattukudy, 1984; Zhang et al., 2009; Schirmer et al., 2010; Buchanan et al., 2015). The red H represent the ^{2}H-depleted atoms that can come from the 3-phosphoglycerate produced upon the photosynthetic C oxidation. In a C29-alkane, of 60 H atoms, 28 comes from NADPH, 14 from water, 17 from manolyl-ACP (which ultimately derives from acetyl-CoA and pyruvate).