Skip to main content

Research Repository

Advanced Search

System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence

Wang, L.; Steeghs, D.; Casares, J.; Charles, P.A.; Muñoz-Darias, T.; Marsh, T.R.; Hynes, R.I.; O'Brien, K.

System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence Thumbnail


Authors

L. Wang

D. Steeghs

J. Casares

P.A. Charles

T. Muñoz-Darias

T.R. Marsh

R.I. Hynes



Abstract

We present phase-resolved spectroscopy of the millisecond X-ray pulsar XTE J1814-338 obtained during its 2003 outburst. The spectra are dominated by high-excitation emission lines of He II λ4686, Hβ, and the Bowen blend C III/N III 4630–50 Å. We exploit the proven Bowen fluorescence technique to establish a complete set of dynamical system parameter constraints using bootstrap Doppler tomography, a first for an accreting millisecond X-ray pulsar binary. The reconstructed Doppler map of the N III λ4640 Bowen transition exhibits a statistically significant (>4σ) spot feature at the expected position of the companion star. If this feature is driven by irradiation of the surface of the Roche lobe filling companion, we derive a strict lower limit to the true radial velocity semi-amplitude K2. Combining our donor constraint with the well-constrained orbit of the neutron star leads to a determination of the binary mass ratio: q = 0.123+0.012−0.010 . The component masses are not tightly constrained given our lack of knowledge of the binary inclination. We cannot rule out a canonical neutron star mass of 1.4 M⊙ (1.1 M⊙ < M1 < 3.1 M⊙; 95 per cent). The 68/95 per cent confidence limits of M2 are consistent with the companion being a significantly bloated, M-type main-sequence star. Our findings, combined with results from studies of the quiescent optical counterpart of XTE J1814-338, suggest the presence of a rotation-powered millisecond pulsar in XTE J1814-338 during an X-ray quiescent state. The companion mass is typical of the so-called redback pulsar binary systems (M2 ∼ 0.2 M⊙).

Citation

Wang, L., Steeghs, D., Casares, J., Charles, P., Muñoz-Darias, T., Marsh, T., …O'Brien, K. (2017). System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence. Monthly Notices of the Royal Astronomical Society, 466(2), 2261-2271. https://doi.org/10.1093/mnras/stw3312

Journal Article Type Article
Acceptance Date Dec 15, 2016
Online Publication Date Apr 11, 2017
Publication Date Apr 11, 2017
Deposit Date Apr 9, 2018
Publicly Available Date Apr 18, 2018
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 466
Issue 2
Pages 2261-2271
DOI https://doi.org/10.1093/mnras/stw3312

Files

Published Journal Article (1.8 Mb)
PDF

Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2017 The Authors.
Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.





You might also like



Downloadable Citations