Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352.

Ryan, J.G. and Shervais, J.W. and Li, Y. and Reagan, M.K. and Li, H.Y. and Heaton, D. and Godard, M. and Kirchenbaur, M. and Whattam, S.A. and Pearce, J.A. and Chapman, T. and Nelson, W. and Prytulak, J. and Shimizu, K. and Petronotis, K. (2017) 'Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352.', Chemical geology., 451 . pp. 55-66.

Abstract

Handheld energy dispersive portable X-ray spectrometers (pXRF) are generally designed and used for qualitative survey applications. We developed shipboard quantitative analysis protocols for pXRF and employed the instrument to make over 2000 individual abundance measurements for a selection of major and trace elements on over 1200 m of recovered core during the eight weeks of the International Ocean Discovery Program (IODP) Expedition 352 to the Izu-Bonin forearc. pXRF analytical performance, accuracy and precision were found to be the same on powdered rock samples and on freshly cut rock surfaces, and sample results were similar within error to measurements made via shipboard ICP-OES analysis save at low abundance levels for a few elements. Instrument performance was optimal for elements between Z = 19 and Z = 40, and the system yielded reproducible data for K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Rb, Sr, and Zr on both powdered samples and rock surfaces. Working curves developed via pXRF measurement of a suite of geologic standard reference materials and well-characterized lavas permitted accurate quantitative measurements for many of the examined elements on both sample powders and rock surfaces. Although pXRF has been sporadically employed on previous cruises, Expedition 352 is the first time a detailed, high-density chemostratigraphy of recovered core samples was collected using pXRF measurements of rock core surfaces. These high-resolution data allowed the recognition of chemically distinct eruptive units in near real-time. The rapid identification of geochemical trends vastly improved our selection of samples for shipboard and shore-based analysis, permitted a more comprehensive interpretation of our Expedition results, and provided key decision-making information for drilling operations.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
(4258Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1016/j.chemgeo.2017.01.007
Publisher statement:© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Date accepted:09 January 2017
Date deposited:18 April 2018
Date of first online publication:15 January 2017
Date first made open access:No date available

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library