We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Emergence of knock-down resistance in the Anopheles gambiae complex in the Upper River Region, The Gambia, and its relationship with malaria infection in children.

Wilson, A.L. and Pinder, M. and Bradley, J. and Donnelly, M.J. and Hamid-Adiamoh, M. and Jarju, L.B.S. and Jawara, M. and Jeffries, D. and Kandeh, B. and Rippon, E.J. and Salami, K. and D’Alessandro, U. and Lindsay, S.W. (2018) 'Emergence of knock-down resistance in the Anopheles gambiae complex in the Upper River Region, The Gambia, and its relationship with malaria infection in children.', Malaria journal., 17 . p. 205.


Background Insecticide resistance threatens malaria control in sub-Saharan Africa. Knockdown resistance to pyrethroids and organochlorines in Anopheles gambiae sensu lato (s.l.) is commonly caused by mutations in the gene encoding a voltage-gated sodium channel which is the target site for the insecticide. The study aimed to examine risk factors for knockdown resistance in An. gambiae s.l. and its relationship with malaria infection in children in rural Gambia. Point mutations at the Vgsc-1014 locus, were measured in An. gambiae s.l. during a 2-year trial. Cross-sectional surveys were conducted at the end of the transmission season to measure malaria infection in children aged 6 months–14 years. Results Whilst few Anopheles arabiensis and Anopheles coluzzii had Vgsc-1014 mutations, the proportion of An. gambiae sensu stricto (s.s.) mosquitoes homozygous for the Vgsc-1014F mutation increased from 64.8 to 90.9% during the study. The Vgsc-1014S or 1014F mutation was 80% higher in 2011 compared to 2010, and 27% higher in the villages with indoor residual spraying compared to those without. An increase in the proportion of An. gambiae s.l. mosquitoes with homozygous Vgsc-1014F mutations and an increase in the proportion of An. gambiae s.s. in a cluster were each associated with increased childhood malaria infection. Homozygous Vgsc-1014F mutations were, however, most common in An. gambiae s.s. and almost reached saturation during the study meaning that the two variables were colinear. Conclusions As a result of colinearity between homozygous Vgsc-1014F mutations and An. gambiae s.s., it was not possible to determine whether insecticide resistance or species composition increased the risk of childhood malaria infection.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Date accepted:07 May 2018
Date deposited:22 May 2018
Date of first online publication:18 May 2018
Date first made open access:22 May 2018

Save or Share this output

Look up in GoogleScholar