Can Fractional Crystallization, Mixing and Assimilation Processes be Responsible for Jamaican-type Adakites? Implications for Generating Eoarchaean Continental Crust

A. R. Hastie1,2*, J. G. Fitton2, S. F. Mitchell3, I. Neill4,5, G. M. Nowell4 and I. L. Millar6

1School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TJ, UK, 2School of GeoSciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JW, UK, 3Department of Geography and Geology, University of the West Indies, Mona, Kingston 7, Jamaica, 4Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK, 5School of Geographical and Earth Sciences, Glasgow University, Gregory Building, University Avenue, Glasgow G12 8QQ, UK and 6NERC Isotope Geoscience Laboratories, Keyworth, Nottingham NG12 5GG, UK

*Corresponding author. Telephone: +44 (0)121 4144178. E-mail: a.r.hastie@bham.ac.uk

Received July 3, 2014; Accepted May 15, 2015

ABSTRACT

Understanding how the Earth’s first continental land masses were generated is important because the processes responsible directly affected the evolution of the planet’s primordial silicate interior, and also its atmosphere and hydrosphere. Archaean continental crust is dominated by rocks of the trondhjemite–tonalite–granodiorite (TTG) suite. These can be divided into (1) a mid- to late Archaean (3–5–2 Ga) suite with low SiO2 and high MgO, Sr and transition element contents, and (2) an Eoarchaean (>3–5 Ga) suite with higher SiO2 and lower MgO, Sr and transition element concentrations. Cenozoic adakites are considered to be compositionally similar to mid- to late Archaean (3–5–2.5 Ga) TTGs, but not the oldest TTG rocks. Conversely, a suite of Early Eocene adakite-like rhyodacites (Jamaican-type adakites: JTA) from Jamaica are shown to be geochemically similar to the Eoarchaean TTGs. In contrast to newly discovered JTA-like rocks (Ryozen low Sr/Y) in Japan, new trace element and Nd–Hf radiogenic isotope data in this study confirm that the Jamaican JTA cannot be formed by complex mixing, assimilation and fractional crystallization processes. New partial melt models here explore several different source compositions (mid-ocean ridge basalt, ocean island basalt and oceanic plateau), mineral modes, melt modes and partition coefficients. The results of these models clearly demonstrate that the JTA and the Eoarchaean TTG can be generated by partial melting of plagioclase- and garnet-bearing amphibolite source regions with oceanic plateau-like compositions. Further modelling shows that the JTA and Eoarchaean TTG low MgO and transition element abundances can be derived from two dominant processes: (1) relatively shallow partial melting of subducting oceanic crust (compositionally similar to Mesozoic oceanic plateau basalt) whereby the slab melts ascend without interacting with a mantle wedge; (2) partial melting of oceanic plateau-like subducting oceanic crust followed by interaction of the slab melts with a thin and/or discontinuous (boudinage-like?) mantle wedge whereby the expected increase of MgO, Ni, and Cr in the slab melts is obliterated by fractional crystallization of ferromagnesian minerals (mostly amphibole). Consequently, using the JTA as a modern analogue for Eoarchaean TTG production, we propose the existence of subduction zones consuming oceanic plateau-like oceanic crust in Eoarchaean times.
Key words: early Archaean (Eoarchaean) continental crust; high-Nb basalts; Jamaican-type adakite (JTA); mantle metasomatism; oceanic plateau subduction; trondhjemite–tonalite–granodiorite (TTG)

INTRODUCTION

The processes responsible for generating the continental crust have resulted in the modification of the Earth’s mantle, hydrosphere and atmosphere throughout geological time. However, the generation and subsequent evolution of the Earth’s oldest (3.5 Ga) continental crust are poorly understood and are currently hotly debated (e.g. Hoffmann et al., 2010, 2011; Polat, 2012, 2013; van Hunen & Moyen, 2012; Bédard et al., 2013; Ziaja et al., 2014; Rollinson, 2014; Turner et al., 2014). The oldest surviving continental rocks are the Acasta gneisses, Canada (~4.0 Ga) (Bowing et al., 1990) and, although Archaean crust can have a varied lithology depending on its age (e.g. Kusky & Polat, 1999), the majority (estimates up to 90%) of the early continental crust from 4.0 to 3.5 Ga is composed of variably deformed Na-rich granitoids of the trondhjemite–tonalite–granodiorite (TTG) rock suite that are considered to be derived from the partial melting of metabasic source regions (e.g. Barker & Arth, 1976; Rapp et al., 1991; Rapp & Watson, 1996; Martin, 1999; Clemens et al., 2006; Moyen & Stevens, 2006; Nutman et al., 2009; Friend & Nutman, 2011; Nagel et al., 2012; Polat, 2012). Nevertheless, the composition and tectonic setting of this basaltic source region remain controversial (Martin, 1999; Foley et al., 2002; Hoffmann et al., 2011; Adam et al., 2012; Laurie & Stevens, 2012; Moyen & van Hunen, 2012; Nagel et al., 2012; Polat, 2012; Zhang et al., 2013; Ziaja et al., 2014).

Hastie et al. (2010a) described a suite of Early Eocene rhyodacites from Jamaica (Fig. 1), called the Newcastle Volcanics, which have very similar compositions to Eoarchaean TTG suites. Data suggested that the Newcastle Volcanics were generated by partial melting of a subducting portion of an oceanic plateau. The Newcastle Volcanics were subsequently used as a modern analogue of Eoarchaean TTG suites and Hastie et al. (2010a) proposed that Early Archaean continental rocks are derived from the subduction of oceanic plateau-like subducting plates on the early Earth. However, recently, other Newcastle Volcanics-like rocks have been described from other parts of the world and their petrogenesis has been explained by fractional crystallization processes without the need for oceanic plateau-like metabasic protoliths (Shuto et al., 2013). In addition, although it is gaining support, the use of the Newcastle rocks as modern analogues of Eoarchaean TTG has proved controversial (e.g. Castillo, 2012; Moyen & Martin, 2012). Consequently, the purpose of this contribution is to (1) use new geochemical data to investigate possible fractional crystallization, mixing and assimilation processes for generating the Newcastle Volcanics, surrounding arc rocks and high-Nb basalts on Jamaica in a single geochemically coherent model, and (2) further discuss the petrogenesis of the Newcastle samples and the implications for the potential composition of the Eoarchaean continental source protolith and tectonic environment.

As a result of the controversy surrounding the petrogenesis of the Newcastle rocks, we use a relatively large number of geochemical models to study the latter and make use of extensive Supplementary Data (available for downloading at http://www.petrology.oxfordjournals.org) to present all the modelling parameters used, the rationale for their use, and to display the results of the calculations. Specifically, we have used published experimental results to constrain modelling parameters using standard mass-balance procedures—similar to other studies (e.g. Moyen & Stevens, 2006).

JAMAICAN GEOLOGY

The geology of Jamaica is dominated by Tertiary limestones and recent alluvial deposits (Mitchell, 2004, 2013). In contrast, a third of the island exposes Cretaceous inliers predominantly composed of island arc rocks (Fig. 1a and b) (e.g. Mitchell, 2006). In the east, there is the NW–SE-trending Wagwater Belt, which is an inverted Paleogene extensional basin (Fig. 1c; Supplementary Data Fig. A1, Appendix A) (Jackson & Smith, 1978). The Wagwater Belt contains volcanic rocks that include the Early Eocene Newcastle Volcanics (the Jamaican-type adakites; JTA) and the Halberstadt Volcanics (associated high-Nb basalts) (Jackson & Smith, 1978; Jackson et al., 1989).

Here, new data are presented from the Newcastle and Halberstadt Volcanics and island arc lavas in the surrounding Cretaceous inliers (Fig. 1b; Supplementary Data Tables B1–B4, Appendix B). The island arc rocks studied consist of the following: (1) the tholeiitic to calc-alkaline (Hauterivian–Aptian) Devils Racecourse Formation (Benbow Inlier) (Hastie et al., 2009; Brown & Mitchell, 2010); (2) the predominantly calc-alkaline igneous rocks (early to mid-Campanian) of the Central Inlier (Hastie et al., 2013; Mitchell, 2013); (3) a granodiorite pluton (the Above Rocks Granodiorite) and associated lava flows (the Mount Charles and Border Volcanics) in the Above Rocks Inlier; (4) porphyritic, calc-alkaline lavas of the Thornton Formation (early to mid-Campanian) from the Sunning Hill Inlier; and (5) porphyritic island arc tholeiite lavas of the Bellevue Formation (mid- to late Campanian) in the Blue Mountains Inlier (Mitchell & Ramsook, 2009; Hastie et al., 2010c) (Fig. 1b; Supplementary Data Figs A2–A4, Appendix A).
CLASSIFICATION AND PETROGENESIS OF TTGS AND ADAKITES

Early Archaean (>3.5 Ga) versus Mid- to Late Archaean (<3.5) TTGs

Archaean TTG plutons are commonly composed of quartz, Na-rich plagioclase, amphibole, biotite, Fe–Ti oxides, apatite, epidote, allanite, titanite and zircon (e.g. Jahn et al., 1981; Drummond et al., 1996; Martin et al., 2005; Moyen & Stevens, 2006; Hoffmann et al., 2011). Only the high-Al (>15 wt % Al₂O₃) TTG group will be considered here because it has compositions analogous to the Newcastle Volcanics (Barker et al., 1976; Barker & Arth, 1976; Hastie et al. 2010a, 2010b). These TTG rocks have >64 wt % SiO₂, Al₂O₃ (>15 wt %), high Na₂O of 3.0–7.0 wt %, low K₂O/Na₂O ratios (<0.6) and low Y and Yb contents (<20 and <1.8 ppm respectively) (e.g. Barker & Arth, 1976; Barker et al., 1976; Jahn et al., 1981; Drummond et al., 1996; Smithies, 2000; Condie, 2005; Martin et al., 2005; Nutman et al., 2009; Hoffmann et al., 2011). Importantly, in the literature TTG rocks can be broadly divided into (1) a mid- to late Archaean (~3.5–2.5 Ga) suite with lower SiO₂ and higher MgO, Sr, Ni, Cr, Co and V contents, and (2) an Eoarchaean (>3.5 Ga) suite with higher SiO₂ and lower MgO, Sr, Ni, Cr, Co and V concentrations (Table 1) (e.g. Smithies, 2000; Martin & Moyen, 2002; Smithies et al., 2003; Martin et al., 2005; Willbold et al., 2009; Rollinson, 2014).

Experimental petrology and trace element modelling suggest that the Archaean TTG are derived from the fusion of metabasic protoliths that have been transformed into amphibolite, garnet amphibolite or eclogite (e.g. Rapp et al., 1991, 2003; Sen & Dunn, 1994a; Rapp & Watson, 1995; Moyen & Stevens, 2006; Zhang et al., 2013).

Cenozoic adakites—a TTG analogue and an Eoarchaean problem?

Modern adakites are intermediate–silicic volcanic and intrusive rocks that contain plagioclase, amphibole, pyroxene, biotite, quartz and several accessory phases (e.g. Defant et al., 1992; Martin et al., 2005). Adakites have SiO₂ >56%, Al₂O₃ >15%, high Na₂O 3.5–7.5 wt %, MgO <3%, low K₂O/Na₂O <0.5, low Y and Yb (<18 and <1.9 ppm respectively), high Ni, Cr and V abundances.
Table 1: Averaged chemical compositions of normal island arc ADR lavas, adakites, and TTG suites

ADR Adakites Eoarchaean TTG Later Archaean TTG

<table>
<thead>
<tr>
<th>Island</th>
<th>Cenozoic</th>
<th>Early Archaean</th>
<th>Archaean</th>
<th>Archaean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A1′</td>
<td>A1</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>A2′</td>
<td>A2</td>
<td>A2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A1′</th>
<th>A2′</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>MgO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>SiO2</td>
<td>66.0</td>
<td>66.0</td>
<td>66.0</td>
</tr>
<tr>
<td>FeO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>K2O</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CaO</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cr</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C2005</th>
<th>C2005</th>
<th>C2005</th>
<th>C2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>MgO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>SiO2</td>
<td>66.0</td>
<td>66.0</td>
<td>66.0</td>
</tr>
<tr>
<td>FeO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>K2O</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CaO</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cr</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>MgO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>SiO2</td>
<td>66.0</td>
<td>66.0</td>
<td>66.0</td>
</tr>
<tr>
<td>FeO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>K2O</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CaO</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cr</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>MgO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>SiO2</td>
<td>66.0</td>
<td>66.0</td>
<td>66.0</td>
</tr>
<tr>
<td>FeO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>K2O</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CaO</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cr</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note: Major element data are the averaged anhydrous contents of the Newcastle rocks from Hastie et al. (2010) and transition element averages that are in parentheses, which are new published values from Table B2, Appendix B. TTG averages from Hoffmann et al. (2010) include homogeneous TTG analyses from the paper’s supplementary data file. Hf and Sr/Y values are calculated from Drumm (1996) and Martin et al. (2006).
and high large ion lithophile element (LILE) contents with Sr > 400 ppm (Table 1) (e.g. Defant et al., 1991, 1992; Drummond et al., 1996; Martin, 1999; Condie, 2005; Castillo, 2012). Martin et al. (2005) divided adakites into (1) a high-SiO₂ adakite (HSA) subgroup that represents ‘type’ adakites and (2) a low-SiO₂ adakite (LSA) subgroup that represents high-Mg andesites (Table 1). The HSA have lower MgO (0.5–4 wt %), Fe₂O₃ + MgO + MnO + TiO₂ ~7 wt %, CaO + Na₂O contents <11 wt % and La/Yb ≥ 20 (Table 1).

There are several theories to explain the generation of Cenozoic adakites, such as melting of lower crustal sources and fractional crystallization processes (e.g. Macpherson et al., 2006; Shuto et al., 2013). However, the most widely accepted model for forming Cenozoic adakites is the partial melting of subducting basaltic crust that has been transformed into amphibolite, garnet amphibolite or eclogite (e.g. Kay, 1978; Kepezhinskas et al., 1995; Yogodzinski et al., 1995, 2001; Drummond et al., 1996; Martin, 1999; Rapp et al., 1999; Foley et al., 2002; Martin et al., 2005; Moyen & Stevens, 2006; Moyen, 2009; Ayabe et al., 2012; Sato et al., 2013). Experimental studies and field evidence also suggest that, when ascending adakitic slab melts pass through the mantle wedge, the magma assimilates peridotite, resulting in the hybridization of the slab melt (lower SiO₂ and higher MgO and transition element contents) (e.g. Kepezhinskas et al., 1995; Rapp et al., 1999; Tsuchiya et al., 2005; Sato et al., 2013).

High-SiO₂ adakites (not LSA) are considered to be compositionally similar to mid- to late Archaean (~3.5–2.5 Ga) TTGs (e.g. high Al₂O₃, Na₂O and Sr contents, high La/Yb ratios and low heavy rare earth element (HREE) concentrations) and both show evidence that they interacted with a mantle wedge (e.g. high MgO and transition element contents) (e.g. Martin & Moyen, 2002; Moyen and Martin, 2012; Smithies et al., 2003; Moyen, 2009). Thus, although controversial (e.g. Macpherson et al., 2006; Castillo, 2012), studies of present-day adakites, in addition to experimental petrology and numerical modelling of TTG suites (e.g. Clemens et al., 2006; Laurie & Stevens, 2012), have led to the commonly published proposal that mid- to late Archaean TTGs are formed by partial melting of subducting Archaean oceanic plates (e.g. Smithies et al., 2003; Martin et al., 2005). Nevertheless, it should be noted that generating Archaean TTG magmas has also been explained using non-subduction environments (similar to alternative adakite models). These environments include the partial melting of lower oceanic plateau crust, fusion of thickened mafic crust and/or anatexis of delaminated mafic crust (e.g. Atherton & Petford, 1993; van Thienen et al., 2004; Smithies et al., 2009; Zhang et al., 2013).

In contrast to younger Archaean TTG suites, Eoarchaean TTGs do not have compositions comparable with HSA because they generally have higher SiO₂ and Zr contents and lower TiO₂, Al, Sr, MgO, Ni, Cr and V concentrations (Smithies, 2000; Martin & Moyen, 2002; Smithies et al., 2003; Martin et al., 2005; Nutman et al., 2009) (Table 1). Therefore, how are the Eoarchaean TTG suites generated? Although models to explain the generation of HSA and the younger Archaean TTG suites are controversial, it would be beneficial to discover a modern adakite example that has a composition similar to the Eoarchaean TTG to help us determine if subduction (or subcretion, Bedard et al. 2013) is a viable process on the early Earth.

Newcastle Volcanics (Jamaican-type adakites)— modern analogue of Eoarchaean TTG?

The Newcastle lavas are altered, have quartz, plagioclase and amphibole phenocrysts, and have 64–72.2 wt % SiO₂, 14.5–15.9 wt % Al₂O₃, low K₂O of 0.1–1.1 wt % and a high average Na₂O abundance of 5.8 wt % (anhydrous values of 67.9–73.4 wt % SiO₂, 15.1–16.1 wt % Al₂O₃, K₂O of 0.1–1.2 wt % and Na₂O of 5.9 wt %) (Supplementary Data Fig. A5, Appendix A). The lavas have moderately high abundances of LILE and light REE (LREE) (e.g. average La and Th concentrations are 13.87 and 2.89 ppm respectively) and correspondingly low Yb and Y contents of 0.5–0.9 and 5.4–12.8 ppm to give an average La/Yb ratio of ~20 (Table 1). On a normal mid-ocean ridge basalt (N-MORB) normalized multielement diagram the Newcastle samples have negative Nb–Ta anomalies, positive Zr–Hf anomalies and concave-up middle REE (MREE)–HREE patterns (Fig. 2a).

Relative to andesite–dacite–rhyolite (ADR) suites the Newcastle rhyodacites have high Na₂O contents, adakitic-like K₂O/Na₂O (~0:5) and much higher La/Yb ratios (Table 1; Supplementary Data Appendix B). The Newcastle Volcanics are compositionally similar, but not identical, to HSA with their sodic character, high silica, CaO + Na₂O ranging from 5.2 to 10.15, and Fe₂O₃ + MgO + MnO + TiO₂ from 3.04 to 5.78 (anhydrous ranges are 5.3–10.6 and 3.1–5.9 respectively). The Newcastle lavas also have adakite- and TTG-like low average Nb/Ta values and high Zr/Sr ratios of 12.2 and 85.7 correspondingly (Foley et al., 2002); although some studies demonstrate a larger range in TTG Nb/Ta ratios (e.g. Bédard, 2006).

The Newcastle rocks are not similar to continental K-adakites (e.g. Wang et al., 2005) or sodic rhyolites (Moyen, 2009) as their K contents and K₂O/Na₂O ratios are too low. However, the Newcastle Volcanics are also not analogues of HSA because they have a very low average Sr content of 129 ppm and they mostly lack the higher MgO and transition element contents of many modern-day adakites (Table 1; Supplementary Data Appendix B) (e.g. Ayabe et al., 2012; Sato et al., 2013). Hastie et al. (2010b) termed the Newcastle Volcanics Jamaican-type adakites (JTA) not only to highlight their adakitic compositions, but to also emphasize the small chemical differences between JTA and ‘true’ adakites. We continue to argue for a JTA subgroup here, which can be used alongside the geochemically distinct
Further, it is striking how similar the JTA average composition is to the average composition of Eoarchaean TTG rocks (Table 1). For many elements (e.g. Ti and Zr) the JTA are more TTG-like than the other adakite compilations. Importantly, the JTA have the low Sr and transition element contents similar to early Archaean TTG suites. Also, the JTA are compositionally similar to

Fig. 2. (a) N-MORB normalized multi-element plot for the Newcastle rocks (Jamaican-type adakites: JTA) with a chondrite-normalized (La/Yb)_{ch}–(Yb)_{ch} diagram inset. Grey field on the multi-element plot represents Late Archaean to Cenozoic adakites (see Hastie et al., 2010a, for references). Normalizing values are from McDonough & Sun (1995) and Sun & McDonough (1989). (b) ε_{Nd_{52.74}}–ε_{Hf_{52.74}} plot showing the JTA and Halberstadt lavas relative to the surrounding Jamaican island arc lavas and intrusive rocks from the Central, Blue Mountains, Benbow, Above Rocks and Sunning Hill Cretaceous inliers. (See Fig. 1 for location information and Supplementary Data Table B4 for data and data sources.) Group 1 and 2 refer to subgroups of the Halberstadt Volcanics (see text for discussion).
the med-HREE TTG subgroup that has recently been proposed by Moyen & Martin (2012).

DATA AND ANALYTICAL METHODS
The JTA, the Halberstadt Volcanics and island arc rocks from the Cretaceous inliers that surround the Wagwater Basin were analysed for major and trace element and Nd–Hf isotope compositions at Cardiff University, the University of Edinburgh, the NERC Isotope Geosciences Laboratory and the Arthur Holmes Laboratory, Durham University. All the data are given in Supplementary Data Tables B1–B4, Appendix B, along with the analytical methods.

FORMING THE JTA WITH FRACTIONAL CRYSTALLIZATION, MIXING AND ASSIMILATION PROCESSES
Fractional crystallization of Halberstadt magmas to form the JTA
The discovery of JTA-like (Ryozen low Sr/Y) adakites in Japan (Shuto et al., 2013) that can be generated by fractional crystallization processes suggests that the JTA in Jamaica may have also formed by similar processes and not by the fusion of oceanic plateau material. However, in the following sections we use field evidence and several geochemical models to argue that the Jamaican data do not support a fractional crystallization origin for the JTA.

Up to 80–90% fractional crystallization is required to generate TTG-like or adakite-like liquids from a basic melt (e.g. Drummond et al., 1996). Evidence for large accumulations of basic–intermediate plutonic or volcanic rocks that could represent cumulates or parental bodies to TTG liquids are not found in Archaean terranes (e.g. Smithies, 2000; Condie, 2005; Moyen & Martin, 2012). Similar accumulations are also not found near the JTA despite the fact that they are located in an extensional basin (Jackson & Smith, 1978; Jackson et al., 1989).

40Ar/39Ar data indicate that the JTA have an error weighted average age of 52.74 Ma, which is consistent with palaeontological data (Jiang & Robinson, 1987). The only other lavas erupted at this time are the Halberstadt high-Nb basalts (Jackson & Smith, 1978). Consequently, if the JTA are derived from the fractionalation of a basic parental liquid, the Halberstadt lavas represent the only viable parental magma. Previously, Hastie et al. (2011) have shown that the JTA and the Halberstadt lavas have similar age-corrected Nd and Sr radiogenic isotope ratios, but different age-corrected Hf isotope ratios. Thus, the different Hf-isotope ratios suggested that the JTA cannot be directly generated from the fractionalation of a Halberstadt parental liquid. However, new Nd–Hf data in Fig. 2b show that the JTA and Halberstadt Volcanics overlap very slightly and that further studies may well confirm a more extensive isotopic similarity. Therefore, Nd–Hf isotope ratios alone could potentially suggest that the JTA can fractionate from Halberstadt magmas. Nevertheless, major and trace element systematics do not support this assumption.

Figure 3a is a SiO$_2$–Sr variation diagram that suggests that JTA did not fractionate from a Halberstadt parent liquid because the two rock suites form separate liquid lines of descent (different evolutionary trends seen in numerous other variation diagrams; e.g. REE–SiO$_2$). In Fig. 3a the JTA have a positive trend implying that a Sr-compatible mineral phase (plagioclase) was not fractionating in any significant amount. Figure 3b is a Dy/Yb–SiO$_2$ diagram modified from Macpherson et al. (2006) that implies that high Dy/Yb ratios in Philippine adakites are formed by the fractionation of a garnet-bearng assemblage from a basic arc parental magma. The JTA do not attain the high Dy/Yb ratios seen in adakitic rocks from the Philippines. Additionally, garnet fractionation would produce a negative correlation between decreasing Y and HREE abundances and increasing SiO$_2$ content on Harker variation diagrams. Such correlations are seen in adakitic rocks in the Philippines (Macpherson et al., 2006), but not in the JTA (Fig. 3c).

Davidson et al. (2007) showed that basic arc lavas that are dominated by amphibole fractionation generate negative trends on a Dy/Yb–SiO$_2$ plot. Figure 3b shows the trend for amphibole fractionation of basic to silicic island arc lavas in the Lesser Antilles. At the SiO$_2$ contents typical of the JTA the Lesser Antilles arc magmas would eventually evolve to Dy/Yb ratios much lower than those in the JTA. Therefore, the lack of amphibole cumulates and trace element systematics do not strongly suggest that the derivation of the JTA was the result of extensive amphibole-dominated fractional crystallization from a basic parent arc magma.

Thus, differing liquid lines of descent show that the JTA and the Halberstadt lavas are not related to each other by fractional crystallization processes. Also, there is no evidence for substantial plagioclase and garnet fractionation in the JTA data. However, we will show below that the JTA have undergone relatively limited amphibole fractionation, but not from a basic arc parent.

Mixing and assimilation and fractional crystallization (AFC): an isotope approach
In addition to pure fractional crystallization, the Halberstadt magmas could have assimilated arc crust from the surrounding Cretaceous inliers and subsequently fractionated to form a resultant magma with JTA composition. This theory is tested using the 25 new Nd–Hf isotope analyses reported in this study. All samples are age corrected to 52.74 Ma. Figure 2b shows that several of the Jamaican arc units have variable isotopic compositions and it would be possible to construct mixing trends between a large variety of different
samples relative to the Halberstadt rocks. Nonetheless, if a high-temperature alkaline Halberstadt magma were to assimilate substantial proportions of a particular island arc suite, it is likely that it would not simply consume one sample type; it would probably consume a cross-section of the whole suite. Hence, mixing trends have been calculated between the average compositions of the different arc suites and the Halberstadt

Fig. 3. (a) Sr–SiO$_2$ variation diagram illustrating the different liquid lines of descent for the JTA and Halberstadt lavas. (b) Dy/Yb–SiO$_2$ modified from Macpherson et al. (2006) and Davidson et al. (2007), showing the effects of amphibole and garnet fractionation in generating adakitic rocks. The grey fields represent data trends from the aforementioned papers. (c) Lu–SiO$_2$ variation diagram. (d) Average εNd$_{52.74}$–εHf$_{52.74}$ compositions for the Jamaican island arc rocks. Mixing trends constructed using equation (1); the tick marks represent 20% intervals. (e, f) Average εNd$_{52.74}$–εHf$_{52.74}$ AFC modelling trends assuming an assimilation/fractionation ratio of 0.7 between Halberstadt lavas and the Benbow and Central Inlier samples, respectively. Sample symbols as in Fig. 2.
trace elements. These isotopic findings now need to be tested using

\[\varepsilon_{\text{Di}} = \frac{\varepsilon_{\text{Di}} \cdot (1 - X) + \varepsilon_{\text{B}} \cdot X}{\varepsilon_{\text{Di}} \cdot (1 - X) + \varepsilon_{\text{B}} \cdot X} \]

(1)

where \(\varepsilon_{\text{Di}} \) is the epsilon isotope value of the mixture at 52.74 Ma, \(\varepsilon_{\text{Di}} \) and \(\varepsilon_{\text{B}} \) are the epsilon isotope ratios in components A and B respectively at 52.74 Ma, \(C_{\text{A}} \) and \(C_{\text{B}} \) represent the corresponding Hf and Nd concentrations of components A and B respectively, and X is the mass fraction of component A in the mixture (Faure, 1986) (see Supplementary Data Table C1, Appendix C).

The mixing curves between the Halberstadt rocks and the Central Inlier and Benbow Inlier lavas pass close to the JTA. As such, the average \(\varepsilon_{\text{Nd}}(55.74) \) and \(\varepsilon_{\text{Hf}}(55.74) \) value of the JTA can be theoretically explained by a mixture of \(\sim 58\% \) Halberstadt and \(\sim 42\% \) Central Inlier or \(\sim 70\% \) Halberstadt and \(\sim 30\% \) Benbow Inlier. In addition, using variable assimilation rates isotopic AFC curves can also intersect the JTA average using Halberstadt, Benbow and Central end-members (see Fig. 3e and f for examples). The equations for these calculations are from DePaolo (1981) and include

\[\varepsilon_{\text{C}} = \frac{r + \frac{C_{\text{W}}}{F}}{r - 1} (1 - \frac{F}{F_{\text{m}}}) \]

\[Z = \frac{r + D_{\text{B}} - 1}{r - 1} \]

(3)

where \(\varepsilon_{\text{C}} \) is the epsilon isotope value of the magma, \(\varepsilon_{\text{C}}_{\text{W}} \) is the isotope ratio in the assimilated wall-rock, \(\varepsilon_{\text{C}}_{\text{B}} \) is the epsilon isotope value in the original magma, \(r \) is the assimilation/fractionation ratio (set to 0.7 in Fig. 3e and f), \(F \) is the fraction of melt remaining, \(C_{\text{B}} \) and \(C_{\text{W}} \) represent elemental concentrations in the initial magma and the assimilated wall-rock respectively, and \(D_{\text{B}} \) is the bulk partition coefficient. \(D_{\text{B}} \) is calculated using a standard fractionating assemblage from Woodhead (1988) (5% olivine, 25% clinopyroxene, 60% plagioclase and 10% magnetite) and partition coefficients from McKenzie & O’Nions (1991) and Bédard (2006). To confirm the validity of using the former mineral mode we have performed simple crystallization computations using the MELTS program of Ghiorso & Sack (1995) that suggest that the Woodhead (1988) mode is an excellent approximation. Input parameters and results are given in Supplementary Data Tables C2 and C3, Appendix C.

The composition of the JTA with regard to isotopic composition may be explained by mixing or AFC processes whereby the Halberstadt magmas have consumed part of the Jamaican arc crust represented by the Central or Benbow Inlier lavas. These isotopic findings now need to be tested using trace elements.

Benbow and Central inlier mixing and AFC trends: a trace element approach

Mixing and AFC trends on the \(\varepsilon_{\text{Nd}}(52.74) \) and \(\varepsilon_{\text{Hf}}(52.74) \) plot suggest that Halberstadt magmas could assimilate arc material with similar compositions to the igneous rocks in either the Benbow or Central Inlier to generate JTA magmas. To confirm this model, the mixing trends need to be assessed using trace element systematics. Direct trace element mixing is investigated by applying the equation

\[C_{\text{m}} = C_{\text{A}} \cdot X + C_{\text{B}} \cdot (1 - X) \]

(4)

where \(C_{\text{m}} \) is the concentration of an element in a mixture, \(C_{\text{A}} \) and \(C_{\text{B}} \) are the abundances of that element in components A and B respectively, and X is the proportion of component A. For AFC processes it is assumed that primary Halberstadt magmas would fractionate the gabbroic mineral assemblage of Woodhead (1988) as well as assimilating Jamaican arc crust. The trace element AFC processes can be calculated using the following equation from DePaolo (1981):

\[C_{\text{f}} = C_{\text{W}} \left[F^{\text{eff}} - \frac{r}{r - 1} \cdot \frac{C_{\text{W}}}{Z_{\text{C0}}} \left(1 - F^{\text{eff}} \right) \right] \]

(5)

where \(C_{\text{f}} \) is the concentration of an element in the resultant magma and other variables are as in equation (2). Input parameters and results are given in Supplementary Data Tables C4–C7, Appendix C.

Figure 4a–h shows representative \(\varepsilon_{\text{Hf}}(55.74) \)-trace element ratio and trace element variation diagrams showing mixing, AFC and fractional crystallization trends between the Halberstadt lavas and samples from the Benbow Inlier (Fig. 4a–d) and the Central Inlier (Fig. 4e–h). It can be clearly seen that none of the modelled trends intersect the JTA data on any of the diagrams. Therefore, although isotopic systematics suggest that the JTA can be formed by mixing or AFC processes between Halberstadt magmas and Benbow and Central Inlier contaminants, the trace element and isotopic-trace element systematics do not support this view.

Can the Border Volcanic rocks explain the generation of the JTA?

Now that the potential involvement of the Halberstadt rocks in the formation of the JTA has been explored, and discounted, we should point out that some of the JTA have similar radiogenic Nd and Hf isotope ratios to the Border Volcanic samples (Fig. 2b). The silicic Border Volcanics (Fig. 1b) are older than the JTA and cannot represent a viable parental magma sensu stricto. However, it is possible that a parental arc magma with a similar composition to the Border Volcanics could fractionate to form the JTA. We now briefly explore this idea. The Border Volcanics are a succession of calc-alkaline and plagioclase- and clinopyroxene-phryic basaltic andesite to andesite lavas. They are of a similar age, and are spatially close to the calc-alkaline and
Fig. 4. (a–d) Representative \(\varepsilon{\text{Hf}}_{52.74} \) versus trace element ratio diagrams showing mixing and AFC trends between the Halberstadt lavas and samples from the Benbow Inlier (a, b) and the Central Inlier (c, d). (e–h) Representative trace element variation diagrams showing mixing, AFC and fractional crystallization trends between the Halberstadt lavas and samples from the Benbow Inlier (e, f) and the Central Inlier (g, h). Ticks on trends in the \(\varepsilon{\text{Hf}}_{52.74} \)-trace element ratio diagrams represent 20% intervals (for clarity) of \(F \) or \(X \), whereas in the trace element variation diagrams they represent 10% intervals of \(F \) or \(X \). Sample symbols as in Fig. 2.
Fig. 5. (a, b) N-MORB-normalized multi-element plots of island arc lavas from the Above Rocks and Sunning Hill inliers. Normalizing values are from Sun & McDonough (1989). Inset Nb/Y–Zr/Y diagram modified from Fitton et al. (1997). (c) Th/Yb–Ta/Yb diagram modified from Pearce (1982). IAT, island arc tholeiite; CA, calc-alkaline; SHO, shoshonite fields. (d, e) Zr/Yb–Nb/Yb diagrams of Pearce & Peate (1995). Information about fractional crystallization trends can be found in the text and Trends 1 and 2 are generated using data predominantly from Bacon & Druitt (1988).
quartz- and plagioclase-phryic basaltic andesite to dacitic rocks of the Mt. Charles and Sunning Hill (Thornton Formation) Volcanics (Fig. 1b; Supplementary Data Table B1 and Fig. A2, Appendices A and B). Figure 5a and b shows that all of the lavas have negative Nb-Ta anomalies on N-MORB normalized multielement diagrams and, in the absence of continental crust (e.g. Draper 1986), these anomalies suggest that the rocks are derived from a subduction zone. Figure 5c shows that the lavas have high Th/Yb ratios and plot in the calc-alkaline island arc field above the modified MORB array of Pearce (1982).

The high field strength element (HFSE) and HREE concentrations of the lavas are similar to MORB compositions except for a small Nb-Ta enrichment and MREE-HREE depletion (Fig. 5a). The lavas have negative Ti anomalies and very slight concave-up MREE-HREE patterns (from Gd to Lu) that are commonly attributed to fractionating Fe-Ti oxides and amphibole respectively. Davidson et al. (2013) recently presented a Dy/Dy* [chondrite-normalized Dy/(La 4/13 × Yb 9/13)] versus Dy/Yb cn diagram to quantify the curvature seen in many chondrite-normalized REE patterns. Amphibole fractionation should generate Dy/Dy* and Dy/Yb cn ratios <1.0 from a chondritic parent or from a theoretical N-MORB source (e.g. Sun & McDonough, 1989) that has been contaminated with a slab flux. The Border Volcanics have Dy/Dy* from 0.62 to 0.70, but have Dy/Yb cn values >1.0. Ho/Lu cn from 0.95 to 1.03 may suggest very limited fractional crystallization of amphibole, but the lack of amphibole phenocrysts and high Dy/Yb D cn probably rule out extensive amphibole fractionation. The Thornton Formation lavas have similar ratios of Dy/Dy* 0.58–0.71, Dy/Yb D cn 1.17–1.35 and Ho/Lu cn ratios from 0.94 to 1.04. Mt. Charles Volcanics have Dy/Dy* from 0.49–0.69, Dy/Yb cn values 0.96–1.22 and Ho/Lu cn from 0.69 to 1.07. Therefore, as with other studies on island arc successions (e.g. Woodhead, 1988; Jolly et al., 1998; Davidson et al., 2007) the evolution of these Jamaican basic to silicic arc lavas can be explained by predominant olivine, plagioclase, clinopyroxene and magnetite fractionation ± a small amount of amphibole.

Samples AHAR16 and AHSUN105 have fairly basic compositions and have not undergone the large degrees of fractionation seen in the other samples (Supplementary Data Table B1, Appendix B). These samples plot on the boundary between Icelandic (mantle plume) basalt and N-MORB on the Nb/Y-Yb/Y diagram of Fitton et al. (1997) (inset of Fig. 5a). This, together with elevated Nb concentrations in Fig. 5a, suggests derivation from a more enriched mantle source than the majority of N-MORB. Additionally, these basic lavas plot in the enriched (E)-MORB section of the global MORB array on the Zr/Yb–Nb/Yb diagram of Pearce & Peate (1995) (Fig. 5d). The remaining silicic samples trend towards high Zr/Yb ratios and plot above the MORB array. Similar high Zr/Yb ratios in other basic island arc lavas have been previously explained by the mobilization of Zr from the subducting slab via a partial melt (e.g. Pearce & Peate, 1995; Neill et al., 2010). Therefore, could these arc lavas be slab melts and represent precursors to the JTA? We model the potential fractional crystallization of the Border Volcanics by using a gabbroic modal mineral assemblage from Woodhead (1988) (5% olivine, 25% clinopyroxene, 60% plagioclase and 10% magnetite). The plagioclase modal percentage should probably be a little lower to allow a higher Sr content to be developed in the subsequent melts. For example, fractionating ~50% plagioclase, ~30% clinopyroxene and ~15% magnetite generates similar trends to those for the Woodhead mode, but with higher Sr contents in the magmas. However, mineral modal percentages and distribution coefficients are so variable that it makes identifying the exact fractionating assemblage extremely difficult. As such, we simply use the Woodhead mode here as it represents a close approximation to the probable mineral mode required. The starting compositions are represented by AHAR16 and AHAR18 separately. AHAR18 is another relatively less evolved sample used to bracket all of the potential compositions for the Border, Mt Charles and Sunning Hill Volcanics. Additionally, because of the predominantly anesitic composition of the Jamaican arc lavas, partition coefficients are taken from Fujimaki et al. (1984) and Bacon & Druitt (1988), except for magnetite and Nb coefficients, which are from Bédard (2006) and McKenzie & O’Nions (1991) respectively (Supplementary Data Table C8, Appendix C). The equation used for our simple fractional crystallization models is

$$C_l = C_0 F^{(D−1)}$$

where C_l is the concentration in the liquid, C_0 is the initial concentration prior to fractional crystallization, D is the bulk partition coefficient of the fractionating assemblage and F is the proportion of melt remaining.

Fractional crystallization trends (AHAR16 and AHAR18) for the gabbroic mineral assemblage using the stated input parameters are shown in Fig. 5e. The trends extend towards higher Zr/Yb and Nb/Yb ratios and can explain the generation of the more silicic Border Volcanics from a basic magma. This simple model shows that higher Zr/Yb ratios, relative to N-MORB, can be the result of fractional crystallization processes and not a slab melt. Therefore, the Border Volcanics are ‘normal’ island arc rocks that have been derived from a slab-flux metasomatized enriched MORB mantle wedge and subsequent fractional crystallization of a gabbroic mineral assemblage with the possibility of small amounts of amphibole fractionation in the lower arc crust to generate Ho/Lu cn < 1.0.

However, can these fractionation models be expanded to explain the generation of the JTA? The most evolved Border Volcanic lava has 61.51 wt % SiO2 (anhydrous: 62.7 wt %) and is nearly as differentiated as some of the JTA. Therefore, if the JTA are derived from the fractional crystallization of Border Volcanic-like
parental magmas it would be expected that the composition of the evolved Border Volcanic lavas would be similar to the JTA composition, but this is not the case. The N-MORB normalized multielement patterns of the Border Volcanic and JTA samples are distinct, with the former having higher concentrations of Sr, P and the MREE–HREE than the latter (Figs 2a and 5a). The differing compositions are highlighted on a La/Sm–Zr/Yb diagram where the 'normal' arc lavas plot in a field separate from the JTA (Fig. 6a).

Fractional crystallization trends using AHAR18 as a starting composition (this sample has the lowest concentration of incompatible elements) are shown in Nb, Sm and Yb variation diagrams in Fig. 6b–d (Supplementary Data Table C8, Appendix C). These trends clearly show that, although the JTA and Border Volcanic lavas have similar radiogenic isotope ratios, the former cannot be formed from the fractional crystallization of a parent magma similar in composition to the Border Volcanic rocks. Even if AHAR16 is used as the starting composition or the fractionating mineral mode is changed to another mineral assemblage (e.g. the low-P amphibole assemblage of Macpherson et al., 2006; 74.3% plagioclase, 21.5% amphibole and 4.2% magnetite), the JTA compositions cannot be replicated.

Summary

Major and trace element and trace element-radiogenic isotope systematics show that in contrast to the JTA-like rocks in Japan (Shuto et al., 2013), the Jamaican JTA cannot be modelled with mixing, fractional crystallization or assimilation processes from any viable parental magma on Jamaica.

JTA AND POSSIBLE EOARCHAEAN TTG PETROGENESIS

The JTA source region and modelling parameters

With the previous modelling in mind, we propose that the JTA can be derived only by partial melting of a metabasic source. We explore this option here with updated partial melt models, with an emphasis on varying mineral and melt modes from published high pressure–temperature experiments.

The geochemistry of the JTA [e.g. low Sr contents (<400 ppm), concave-upwards REE patterns, and
average N-MORB normalized (nmn) Gd/Yb ~1.8] requires plagioclase, amphibole and garnet, respectively, to remain stable in the residue [see Hastie et al. (2010b) for more information]. Such an assemblage will be stable from ~1-0 to 1-6 GPa and will undergo fluid-absent (vapour-absent) partial melting at ~900 °C (e.g. Rushmer, 1991; Sen & Dunn, 1994a; Wolf & Wyllie, 1994; Patiño Douce & Beard, 1995; López & Castro, 2001; Zhang et al., 2013). Plagioclase is not stable in experiments carried out at these temperatures and pressures under water-saturated conditions (e.g. Peacock et al., 1994).

Several experimental studies on metasomatic or intermediate material have documented the phase changes during dehydration of amphibole at the required P-T conditions to stabilize a plagioclase- and garnet-bearing amphibolite residue (Sen & Dunn, 1994a; Wolf & Wyllie, 1994; Patiño Douce & Beard, 1995; Springer & Seck, 1997). Here we shall investigate these starting amphibolite and garnet amphibolite sources to explain the derivation of the JTA. Our modelling will also investigate compositionally different metabasic sources that include N-MORB, E-MORB, ocean island basalt (OIB) (Sun & McDonough, 1989), average Caribbean Oceanic plateau (COP) (Hastie et al., 2008), and average Ontong Java Plateau (OJP) (Fitzon & Godard, 2004; Tejada et al., 2002).

Partition coefficients for low-temperature fusion of a metabasic protolith to generate TTG partial melts are taken from Bedard (2006). However, there is a concern related to the widely variable (and controversial) Nb distribution coefficient for amphibole in intermediate to silicic melts (e.g. Ewart & Griffin, 1994; Klein et al., 1997; Hilyard et al., 2000; Martin et al., 2005; Bédard, 2006; Tiepolo et al., 2007; Laurent et al., 2013). Full discussion on the choice of Nb partition coefficient in amphibole is provided in Supplementary Data Appendix C (p. 11 and the caption to Table C9).

Partial melt models

Garnet-free amphibolite

High (Gd/Yb)$_{nmn}$ ratios (JTA average ~1.8) suggest that small amounts of residual garnet remain in the JTA source region, thus requiring the metabasic protolith to be located at a depth of >30 km (>1.0 GPa) (e.g. Martin et al., 2005; Hastie et al., 2010b). This is also the case for Eoarchaean TTG suites [e.g. average (Gd/Yb)$_{nmn}$ ~2.2; Nutman et al., 2009]. To test this, a garnet-free amphibolite is modelled to determine if high (Gd/Yb)$_{nmn}$ ratios can be achieved. This is important because garnet-free greenstones and amphibolites are regarded as important constituents of island arc crust and are therefore a potential source for JTA and TTG magmas (e.g. Beard & Lofgren, 1991; Médard et al., 2006; Davidson et al., 2007).

We start by modelling partial melting of an average garnet-free amphibolite based on data from Beard & Lofgren (1991). Those researchers reported subsolidus modes for five arc-derived amphibolites (metamorphosed basalts and andesites) at 3 kbar and 850 °C (Beard & Lofgren, 1991, table 5) and here we average the modes to derive a mean starting mineralogy. The melting mode is calculated from the changing average mineral modes after ~19% dehydration partial melting at 900 °C and 3 kbar (Beard & Lofgren, 1991, table 3; Supplementary Data Table C9, Appendix C).

Additionally, because Zr and P concentrations are buffered in the JTA (Fig. 7a and b), an estimated 0.01% and 0.16% zircon and apatite, respectively, are added to the mineral starting mode and are presumed to melt modally. These zircon and apatite proportions are chosen so that they account for approximately half to two-thirds of the Zr and P concentrations in an N-MORB, E-MORB and COP protolith. More information on zircon and apatite is given in Supplementary Data Appendix C (p. 11). Residual ilmenite has the potential to buffer Ti contents, but there is no evidence for Ti buffering in the JTA data (Fig. 7c). Therefore, modal volumes of ilmenite are replaced with magnetite in the original mineral and melt modes of Beard & Lofgren (1991). Interestingly, it has been proposed in the literature that fusion of a source region with residual Ti-rich phases (rutile or ilmenite) will generate melts with high Nb/Ta ratios (>25) whereas residual amphibole forms melts with low Nb/Ta (<<25) (e.g. Foley et al., 2002; Hoffmann et al., 2011). Therefore, the low average Nb/Ta ratios of the JTA (~10–16) and Eoarchaean TTG (e.g. ~9; Nutman et al., 2009; ~14: Hoffmann et al., 2011) may suggest amphibole control. Figure 8 shows N-MORB-normalized multi-element patterns generated by 1–18% partial melting of a shallow metabasic protolith with N-MORB, E-MORB, OIB and COP starting compositions (Supplementary Data Table C9, Appendix C). The non-modal partial melt equation from Shaw (1970) is used for the calculation:

\[
C_i = \frac{C_0}{D_0 + F(1-P)}
\]

where C_i is the concentration in the resultant melt, C_0 is the concentration in the source region before partial melting, F is the mass fraction of melt generated, D_0 is the bulk partition coefficient prior to partial melting and P is the average of the partition coefficients weighted by the proportion contributed by each phase to the melt.

None of the garnet-free partial melt models can replicate the low MREE–HREE concentrations of the JTA and the Eoarchaean TTG. Relative to the JTA, the fusion of an N-MORB-like source also produces melts with incompatible element contents that are too low (apart from K, Ce, Nb and Ta), and E-MORB and OIB sources generate melts that are mostly too enriched in LiLE and LREE for both JTA and Eoarchaean rocks. A COP source can form melts with incompatible element abundances similar to the JTA and TTG, although the MREE–HREE contents are still too enriched. Additionally, no amount of amphibole fractionation can deplete the MREE–HREE to the concentrations found in the JTA. As an example, Fig. 8 shows
the patterns generated by 30% amphibole fractionation of 1% partial melts. Partial melting of garnet-free amphibolite generates (Gd/Yb)$_{nmn}$ ratios from $\frac{24}{74}$ to $\frac{1}{16}$ for N-MORB and COP protoliths, which is lower than the JTA average of 18 and early TTG average of 22 (Nutman et al., 2009) and 2.8 (Hofmann et al., 2011). Although we have used amphibole as the sole crystallizing phase here, the porphyritic JTA contain quartz,
plagioclase and amphibole phenocrysts. Consequently, at least some amount of quartz and plagioclase should have fractionated. Quartz will have D values of zero for all of the investigated trace elements (e.g. Sen & Dunn, 1994a), and thus will not be considered further. Plots of Sr and Al$_2$O$_3$ vs SiO$_2$ (Figs 3a and 7d) have positive slopes showing that any proportion of plagioclase in the fractionating assemblage could not have been high because of the high partition coefficient of Sr in plagioclase in equilibrium with a TTG-like melt and the fact that plagioclase is a high-Al$_2$O$_3$ phase. Thus, plagioclase is required as a residual phase to buffer the JTA melts at low Sr contents (<<400 ppm), but then Sr increases during fractional crystallization because of a lack of plagioclase removal.

Linear trends are not seen on LREE–HREE vs SiO$_2$ variation diagrams (Fig. 7f and g). This cannot be due to subsolidus silica mobility because of the linear trends with other immobile elements (e.g. Th, Sr and Al$_2$O$_3$: Figs 3a and 7d, e) and the LREE–HREE should be immobile during secondary alteration processes. Therefore, the lack of trends consistent with experimental liquid lines of descent on MREE–HREE vs silica variation diagrams cannot be explained by multi-genetic source regions or subsolidus element mobility (Fig. 7f and g). The scattered MREE–HREE data may best be explained by the variable compatibility of MREE–HREE in a fractionating phase (i.e. amphibole; Bédard, 2006).

Consequently, although other phases (e.g. plagioclase, clinopyroxene, apatite and zircon) probably fractionated at depth to some small degree (especially plagioclase), we have no way of knowing the exact proportions of these phases in the crystallizing assemblage because of the absence of cognate xenoliths in the JTA. Thus, we propose that the initial fractionation of the JTA parental magmas at depth was predominantly caused by amphibole. This conclusion is supported by several recent studies presenting geochemical and xenolith evidence for dominant amphibole fractionation in hydrous arc magmas at low to intermediate depths in the crust (e.g. Davidson et al., 2007; Rodríguez et al., 2007; Dessimoz et al., 2012; Rollinson, 2012, 2014).

Garnet amphibolite (with plagioclase)

If a JTA-like lava and an early Archaean TTG-like rock cannot be generated from a garnet-free amphibolite source, can the JTA, including the high (Gd/Yb)$_{nrm}$ ratios in the JTA and Eoarchaean TTG, be explained by fusion of an amphibolite that leaves garnet in the residue? The JTA and early TTG also have low (buffered) Sr concentrations (<400 ppm) and low Al$_2$O$_3$ contents (<19 wt %) that require plagioclase to remain in the residue during dehydration partial melting (Figs 3a and 7d) (e.g. Beard & Lofgren, 1991; Wolf & Wyllie, 1994; Winther, 1996; Martin, 1999; Martin et al., 2005). Plagioclase is not normally stable in metabasic source regions at pressures above ~1.6 GPa (e.g. Winther, 1996; Martin et al., 2005; Clemens et al., 2006; Moyen & Stevens, 2006); therefore, plagioclase-free amphibolites and eclogitic protoliths above ~1.6 GPa are not modelled.
Experimental starting mineral modes and melt reactions for partial melting of amphibolite metabasic or intermediate protoliths that leave a residue of amphibole, garnet and plagioclase have been given by Sen & Dunn (1994a), Wolf & Wyllie (1994), Patiño Douce & Beard (1995) and Springer & Seck (1997). Our partial melt results using data from these studies generate similar results and, therefore, only those based on Sen & Dunn (1994a) are presented here. However, full details and results for the three other studies can be found in Supplementary Data Tables C10–C14; Figs C1–C5, Appendix C.

Results for N-MORB, E-MORB and COP sources are presented in Fig. 9a–c; an OIB source is not shown because it generates melt compositions that are too enriched relative to the JTA and early TTG. Multi-element plots display the full range of trace element concentrations, but Nb/Sm–Gd/Yb, Nb/Yb–Yb and Sr–La diagrams are also included to better illustrate the depletions and enrichments of elements used for the definition of adakites and TTG (e.g. Sr and Yb concentrations).

Sen & Dunn (1994a) carried out dehydration melting experiments on an amphibolite that stabilizes garnet and plagioclase in the residue at 1.5 GPa given by Sen & Dunn (1994a) (see their p. 406 for the starting mode). The N-MORB partial melt trace element patterns in Fig. 9a do not generally match the whole extent of the MREE–HREE depletion of the JTA, although higher degree melts of E-MORB and COP sources do form JTA-like MREE–HREE patterns. Nonetheless, subsequent fractional crystallization of amphibole from all the model melts can easily produce JTA-like MREE–HREE concentrations for N-MORB, E-MORB and COP starting compositions. The models also replicate Eoarchaean TTG MREE–HREE contents. A Dy–Yb variation diagram (Fig. 7h) shows the importance of dominant amphibole fractional crystallization. The liquid line of descent for amphibole-dominated fractional crystallization explains the JTA data and if plagioclase is included in any large amount (e.g. 60% from Woodhead, 1988) in the fractionating assemblage the good fit between the fractionation trend and the JTA data breaks down. Conversely, smaller proportions of plagioclase do not cause the fit to substantially degrade (approximately up to 15–20%).

Magmas derived from N-MORB and COP protoliths using the data of Sen & Dunn (1994a) can have (Gd/Yb)$_{norm}$ ratios of ~1.8 at ~9–11% partial melting. (Gd/Yb)$_{norm}$ ratios of ~1.8 can also be achieved if a 10%
partial melt of a COP source undergoes ~8% amphibole fractionation. The LILE and LREE concentrations of the JTA and Ba and Sr contents of Eoarchaean TTG are generally not replicated by fusing an N-MORB starting composition (Sr–La diagram in Fig. 9a). Even subsequent large degrees of amphibole fractionation do not generate JTA or early TTG compositions. Partial melt trends using an E-MORB protolith, with and without amphibole fractionation, form trends that are too enriched relative to the JTA and Eoarchaean TTG (Fig. 9b). However, an ~10% partial melt from a COP source, using data from Sen & Dunn (1994a), can generate similar incompatible element concentrations to the JTA and Eoarchaean TTG (Fig. 9c). Moreover, 10–11% partial melting, together with amphibole fractional crystallization, can very closely replicate the whole range of trace element abundances in the JTA.

Consequently, the JTA can be derived by fusing an amphibolite source region with a COP-like composition and residual plagioclase and garnet. In addition, many of the trace element systematics of Eoarchaean continental crust can also be replicated. To further test an oceanic plateau link to the generation of the JTA and the early continental crust, partial melt modelling is repeated in Supplementary Data Fig. C6, Appendix C, using the average trace element composition of the Ontong Java Plateau (OJP) for C_0 values. We thought it sensible to confirm the modelling outcomes by testing another oceanic plateau even though the compositions of oceanic plateau basalts are relatively uniform. As with the COP results, the trace element composition of the JTA and Eoarchaean TTG can be closely replicated using an OJP starting composition.

Adakites are frequently classified based on Sr/Y–Y and chondrite-normalized (La/Yb)$_{cn}$–(Yb)$_{cn}$ systematics (e.g. Martin et al., 2005). Several papers have been dedicated to discussing the variability of these geochemical parameters (e.g. Moyen, 2009) and so we shall not discuss this further. However, Supplementary Data Table C15 and Fig. C7 in Appendix C present the Sr, Y, La and Yb modelling results for the partial fusion of a garnet-and plagioclase-bearing amphibolite COP-like source region with subsequent amphibole fractional crystallization. The results clearly show that these models can explain the Sr/Y–Y and (La/Yb)$_{cn}$–(Yb)$_{cn}$ characteristics of the JTA and Eoarchaean TTG.

Possible island arc protoliths for the JTA and Eoarchaean TTG

The Border Volcanics and some of the JTA have similar Nd–Hf age-corrected radiogenic isotope ratios (Fig. 2b), which suggests that the Border Volcanics lavas could also undergo partial melting to form the JTA. Figure 10a–c shows that melts formed from a garnet amphibolite with the composition of the Border Volcanics have enriched incompatible element patterns that are not similar to the JTA (Supplementary Data Table C16, Appendix C). In addition, small outcrops of latest Cretaceous metamorphic rocks occur in the Blue Mountains Inlier, eastern Jamaica, and include blue schists and greenschists of the Mount Hibernia Schists and amphibolites of the Wesphalia Schists (Draper, 1986; Abbott et al., 1996; Abbott & Bandy, 2008; West et al., 2014) (Fig. 1b and Supplementary Data Fig. A4, Appendix A). The Mount Hibernia Schists are dominated by metabasic igneous rocks, and recently West et al. (2014) showed that they are compositionally similar to obducted oceanic plateau rocks found in Jamaica (the Bath–Dunrobvin Volcanics: Supplementary Data Fig. A4, Appendix A). The Wesphalia Schists were originally thought to include sedimentary, pyroclastic and volcaniclastic components, but the effects of intense metamorphism make identifying pre-metamorphic rock types very difficult (Draper, 1986; West et al., 2014). However, West et al. (2014) reported the presence of very limited exposures of metabasic garnet-bearing amphibolites that have island arc-like compositions. If we take the only available analysis of a Wesphalia garnet amphibolite [sample 09-1 A of West et al. (2014)] as representative of a source composition and use the same modelling parameters as in Fig. 10a–c, the resultant melts are too enriched in incompatible elements to account for the JTA (Fig. 10d–f).

Adam et al. (2012) and Nagel et al. (2012) have suggested that Archaean TTGs can be derived from the partial melting of island arc-like metamorphic protoliths. We test this hypothesis by carrying out partial melt calculations using average Eoarchaean island arc-like metasalt and boninitic metabasalt compositions from Nutman et al. (2009). The compilation of data is largely from Nutman’s previous papers and Polat & Hofmann (2003). The results (Fig. 11a–f; Supplementary Data Fig. C8 and Table C17, Appendix C) show that a boninitic source (Fig. 11a–c) generally forms melts that are too depleted in the most incompatible elements relative to Eoarchaean TTGs. In contrast, melts derived from an average Eoarchaean island arc-like metasaltic source generate melts compositionally similar to Eoarchaean TTG suites.

Some researchers consider Archaean metasaltas to gain their arc-like compositions from crustal contamination processes and not from an Archaean subduction environment. Regardless of the subduction versus non-subduction nature of these rocks the models presented here (and in other papers; e.g. Bedard, 2006) show that Archaean metasaltas can potentially undergo partial melting to generate TTG compositions. However, it is unknown whether the relatively small volumes of Eoarchaean island arc-like metasaltic material (e.g. Nutman et al., 2009) could have been the source for the large volumes of Eoarchaean plutonic TTG rocks via intracrustal partial melting.

Summary

The JTA and Eoarchaean TTG could have been derived from the partial melting of metamorphosed oceanic
plateau-like metabasic protoliths that leave a residue of amphibole, garnet and plagioclase (and apatite and zircon for the JTA). Partial melt models for melting the base of an oceanic plateau have also been computed by Bédard (2006) and Zhang et al. (2013). Their results are very similar to our findings and help support the idea of generating Archaean TTG from oceanic plateau-like source regions, whether this be in a subducting (or subcreting) environment or not.

HALBERSTADT (HIGH-Nb) BASALT GENESIS AND EOARCHAEOAN MAFIC ARC ROCKS

The Halberstadt Volcanics
To construct a realistic tectonic model for the generation of the JTA we cannot ignore the petrogenesis of the small succession of Halberstadt high-Nb basalts (HNB) that are of the same age as the JTA (Supplementary Data Fig. A1, Appendix A). We have previously discounted a direct petrogenetic link...
between the HNB and the generation of the JTA, but we now explore the petrogenesis of the HNB so that they can also be integrated into a holistic tectonic model. This may also help us to develop a better tectonic model for Eoarchaean melt generation environments.

High-Nb basalts, with >20 ppm Nb, are associated with adakites in subduction environments, but their petrogenesis is controversial (e.g. Reagan & Gill, 1989; Defant et al., 1992; Kepezhinskas et al., 1995; Sajona et al., 1996; Wyman et al., 2000; Castillo, 2008). The two main hypotheses for their derivation are (1) partial melting of upper mantle that is composed of enriched OIB-like and depleted MORB-like components (e.g. Reagan & Gill, 1989; Castillo, 2008), and (2) partial melting of upper mantle peridotite that has been metasomatized with slab melt components (e.g. Defant et al., 1992; Kepezhinskas et al., 1995, 1996).

The Halberstadt rocks are classified as HNB (Hastie et al., 2011) and form two distinct subgroups with Group 1 lavas having higher LILE, LREE and HFSE abundances and slightly lower HREE contents than Group 2 lavas (Fig. 12a). Group 1 and 2 lavas have different
Fig. 12. (a) Primitive mantle (PM) normalized multi-element plot showing Group 1 and 2 Halberstadt lavas. Normalizing values are from McDonough & Sun (1995). Dark and light grey fields represent HNB and Nb-enriched basalt (NEB) respectively (see Hastie et al., 2011, for data sources). (b, c) (SiO$_2$)$_8$–Nb and Zr plots [(SiO$_2$)$_8$: fractionation correction using SiO$_2$ + 0.31MgO – 2.48 (Klein & Langmuir, 1989)]. (d–g) Representative incompatible element variation diagrams with various partial melt trends (see text for details).
\(^{143}Nd/\text{Sm} \) values, which indicates that they are derived from compositionally distinct source regions (Fig. 2b). The Halberstadt rocks also form negative trends on Nb and Zr vs \((\text{SiO}_2)_{3.0}\) diagrams that are commonly explained in terms of different degrees of partial melting (Fig. 12b and c). Therefore, the petrogenesis of Groups 1 and 2 has been interpreted as reflecting derivation from isotopically distinct sources undergoing variably small degrees of fusion.

Hastie et al. (2011) argued for the Halberstadt lavas to be derived from a mantle source metasomatized by slab melts partly because most of the upper mantle beneath, and adjacent to, Jamaica at \(\sim\)55 Ma should have been composed of depleted material formed by the generation of the \(\sim\)90 Ma COP by 20–30% partial melting (e.g. Hauff et al., 1997; Révillon et al., 2000; Kerr et al., 2002a, 2002b; Hastie & Kerr 2010). However, new data of Neill et al. (2011) and Hastie et al. (2013) show that undepleted oceanic plateau mantle source were present below Jamaica in the Tertiary and these sources could have given rise to the Halberstadt lavas.

Figure 13a–c shows small-degree partial melting trends for spinel- and garnet-peridotite source regions with oceanic plateau-like mantle starting compositions (Supplementary Data Table C18, Appendix C). There is a lack of data to determine confidently the composition of the COP mantle source region at this time; thus, data for the OJP are used to determine the composition of the theoretical oceanic plateau source. HNB samples present two trends suggesting that the HNB lavas could be formed from the partial melting of a mantle source that extends across the garnet–spinel transition. Gurenko & Chaussidon (1995) presented mineral and melt modes for a garnet- and spinel-bearing OJP-like peridotite (COP) (Fig. 13a). Primitive mantle-garnet generates a partial melt trend that passes through the HNB and OJP data (Fig. 13a). Primitive mantle-normalized multielement diagrams confirm that Group 1 Halberstadt lavas can be explained by \(\sim\)0.5–1.0% fusion of a spinel- and garnet-bearing OJP-like peridotite source region (Fig. 13b–d; Supplementary Data Table C19, Appendix C).

Figure 13a also suggests that Group 2 lavas can be explained by slightly larger degrees of partial melting (1.0–2.5%). However, the modelled partial melts cannot replicate the Group 2 LREE–MREE depletion (Fig. 13d). Group 2 samples have an average \((\text{Ce}/\text{Ce}^{*})_{\text{Nd}} \) of 0.9, which may suggest a source region contaminated with a slab-derived sedimentary component (e.g. Plank & Langmuir, 1998). Thus, our data suggest that there is evidence for JTA slab–mantle interaction in the petrogenesis of the Group 2 lavas.

Slab melt–peridotite interaction?

Experiments show that partial melting of a basaltic source commonly generates silicic melts with low MgO concentrations (e.g. \(<\)1.4 wt %; Rapp et al., 1999). Carroll & Wyllie (1989) and Rapp et al. (1999) showed that if these silicic melts react with peridotite the resultant liquids will have much higher MgO contents (e.g. 2.4–3.9 wt %; Rapp et al., 1999). Most of the JTA have low MgO contents and only two samples have \(\text{MgO} > 2.0 \) wt % (AHWG18 and AHWG19). Therefore, the JTA magmas may not have substantially interacted with a peridotite source after anatexis. However, the models we present suggest that \(\sim\)10–30% amphibole fractionation is required to generate many (but not all) of the JTA. This being so, can amphibole fractionation obliterate a mantle signature?

We model the effects of separating an amphibole-dominated cumulate assemblage from the JTA parental magmas by taking several published analyses of amphibole-rich xenoliths and then estimating the MgO content of the JTA parental magmas by mass balance:

\[
C_0 = C_{\text{JTA}}(1-X) + C_F. \tag{8}
\]

This equation is similar to equation (4), but here \(X\) is the proportion of solid cumulate material removed, \(C_{\text{JTA}}\) is the average composition of the JTA lavas and \(C_F\) is the composition of the cumulate. Recent studies have reported whole-rock compositions for amphibole-rich lower arc cumulate xenoliths (Rodriguez et al., 2007; Dessimoz et al., 2012). Using compositions from these studies shows that correcting the average JTA composition for the removal of 25% by mass of a typical cumulate generates JTA parental melts with silicic compositions and MgO contents of \(\sim\)4.1–4.3 wt % (Supplementary Data Table C20, Appendix C). The Nb/Sm–Gd/Yb diagram in Fig. 9c can be used to estimate the degree of amphibole fractional crystallization for each JTA lava, and these values are used in equation (8) to calculate the original magma compositions of each of the JTA rocks (Supplementary Data Table C21, Appendix C). Some of the JTA (e.g. AHWG14 and AHWG22) have a composition that can be explained without the need for extensive amphibole fractionation. These samples have low calculated parental MgO \(<\)2.0 wt %) and have probably not interacted with a mantle wedge. Also, studies show that silicic (on the dacite–rhyolite boundary) experimental melts derived from basaltic sources can have MgO abundances up to \(\sim\)3 wt % (e.g. Wolf & Wyllie, 1994; Martin et al., 2005). Thus, even if mass balance implies that a JTA magma had 2–3 wt % MgO these magmas may still be derived from a metabasic source region and ascend without reacting with a mantle wedge. However, some theoretically calculated parental JTA magmas have \(>\)3 wt % MgO, which strongly indicates that some of them may have variably interacted with a mantle wedge, and it is possible that the Group 2 lavas are derived from a source contaminated by slab melts.
Fig. 13. (a–d) Nb/Dy–Lu plot and primitive mantle normalized trace element patterns linked to (a) that show a range of anhydrous mantle partial melt trends to determine the petrogenesis of the Halberstadt HNB. (e–g) Nb/Dy–Lu plot and primitive mantle normalized diagrams linked to (e) that show a range of hydrous partial melt trends to determine the petrogenesis of the Halberstadt HNB. Dark and light grey fields represent Group 1 and Group 2 HNB, respectively. (h) Primitive mantle normalized diagram showing the results of 25–35% hydrous modal batch partial melting of an OJP source region contaminated with 5% Eoarchaean TTG. The composition of the OJP source region and the average TTG contaminant are from Fitton & Godard (2004) and Nutman et al. (2009) respectively. The grey field represents Eoarchaean island arc basalt samples from Nutman et al. (2009) (minus sample JG03/03). Normalizing values are from McDonough & Sun (1995).
Magma from a mantle source contaminated with a slab melt

A silicic slab-derived melt ascending through a mantle wedge will fractionate and react with the mantle, thereby converting the peridotite mineralogy to an assemblage of Nb- and Ti-enriched amphibole (argisite), garnet, phlogopite, clinopyroxene, orthopyroxene and plagioclase (e.g. Carroll & Wyllie, 1989; Johnston & Wyllie, 1989; Sen & Dunn, 1994b; Kepezhinskas et al., 1995; Rapp et al., 1999; Prouteau et al., 2001; Tsuchiya et al., 2005). Modelling this interaction is extremely difficult because the petrological processes involved in the multi-stage and polybaric reactions are complex and not fully understood (e.g. Johnston & Wyllie, 1989; Moyen, 2009; Ayabe et al., 2012; Rollinson, 2014). Thus, the model we now present is a simplified version of what in reality must be a highly complex system. The modelling procedure is detailed in Supplementary Data Appendix C (p. 44).

To derive JTA magmas from a subducting slab and have them ascend to interact with the overlying mantle wedge, a pressure range of 1–0.5 GPa is required to stabilize residual amphibole, garnet and plagioclase in the downgoing slab. Phlogopite is usually stable at higher pressures (and lower temperatures) in peridotite reaction zones (e.g. Adam et al., 1993; Kepezhinskas et al., 1995; LaTourrette et al., 1995) and a mantle wedge will already contain ortho- and clinopyroxene, so these minerals will not be considered further. We therefore consider a situation in which primary JTA magmas ascend and metasomatize an overlying mantle wedge at pressures <1-6 GPa where they precipitate amphibole and garnet. Garnet is stable at low pressures during slab melt-peridotite reactions (e.g. Carroll & Wyllie, 1989; Sen & Dunn, 1994b). The JTA magmas are also considered to be saturated in P and Zr so apatite and zircon may also fractionate from the JTA magma in a reaction zone.

The JTA can be largely explained by amphibole fractionation after melt generation; therefore, if we now propose that all of the JTA magmas have fractionally crystallized a garnet and amphibole assemblage the conclusions of the previous JTA petrogenesis models are not valid. However, only the initial JTA magmas would metasomatize the overlying thin mantle wedge. This would armour melt pathways into the Jamaican crust whereby subsequent JTA magmas will predominantly crystallize amphibole (e.g. Tsuchiya et al., 2005; Moyen, 2009). It is also possible that less garnet is required in the JTA crystallizing assemblage if amphibole in the HNB source melts incongruently and forms residual garnet (e.g. Francis & Ludden, 1995). Furthermore, geochemical models (explained in further detail below) involving much higher proportions of amphibole relative to garnet can easily form Group 2-like compositions; thus, a dominant garnet component is not necessarily required. Large volumes of apatite and zircon could not crystallize from most of the JTA as this would result in negative P anomalies and extreme HREE depletion (e.g. Rollinson, 2012). However, if small volumes of apatite and zircon crystallize from the ascending JTA melts, the fractional crystallization trends for the Sen & Dunn (1994a) COP data in Fig. 9 are not substantially changed.

In the proposed model, a 10% melt derived from the melting models using the parameters from Sen & Dunn (1994a) is fractionated. The modal assemblage that fractionates is composed of amphibole, garnet, apatite and zircon in the proportions 49:245:49:245:1:5:0:1 respectively. The mantle wedge is considered to be a spinel peridotite with a chemical composition required to generate the OJP (see Supplementary Data Table C18, Appendix C). The trace element chemical composition of the peridotite is modified by addition of the average concentration of a trace element in the accumulated crystal extract from the 10% theoretical melt. Subsequently 5–15% of the modal mineralogy of the spinel peridotite is replaced with the amphibole-, garnet- and apatite-bearing mineral assemblage in the proportions 49:25:49:25:1:5. Zircon is considered to be exhausted by <0.1% partial melting and it, thus, not included in the peridotite melting assemblage. This crudely simulates the metasomatic replacement of peridotite minerals in the reaction zone and the addition of a slab melt component (Supplementary Data Tables C22–C24, Appendix C). Figure 13e–g shows partial melt trends for a metasomatized OJP-like mantle wedge source region.

Partial melt trends for 10–15% replacement intersect the majority of the HNB data, but primitive mantle-normalized multi-element diagrams show that only the Group 2 depleted LREE–MREE compositions can be replicated. Therefore, the models suggest that the Group 2 rocks are derived from ~1.0–2.5% partial melting of a slab-metasomatized mantle wedge source region. This may explain why Group 2 lavas slightly overlap the JTA field on an εNd– εHf diagram (Fig. 2b), but the Group 1 lavas do not. Figure 13e–g shows the results for ~50:50 amphibole and garnet, but similar results can be obtained by changing this ratio (additional models are available from the corresponding author on request). We conclude that Group 1 HNB lavas are derived from an enriched oceanic plateau-like peridotite source region. Group 2 HNB lavas are derived from a similar source region that has been contaminated by ascending slab melts.

This conclusion helps explain the HFSE–(SiO2)0.8 and trace element trends in the variation diagrams of Fig. 12b–g. With regard to the HFSE–(SiO2)0.8 diagrams the lower (SiO2)0.8 and higher HFSE contents in the Group 1 lavas are the result of relatively low degrees of partial melting (~0.5–1.0%) of a mantle source not contaminated by slab components. The slightly higher (SiO2)0.8 and lower HFSE abundances in the Group 2 samples is the result of the mantle source being contaminated with silicic melts, and slightly higher degrees of partial melting (~1.0–2.5%). Separate garnet- and spinel-bearing OJP peridotite and 15% metasomatized mantle wedge partial melt trends are shown in the REE-
Nab variation diagrams for comparison (Fig. 12d–g). The LREE and MREE systematics of the Group 1 and 2 samples can best be described in terms of derivation from OJP-like peridotite and OJP-like mantle contaminated by slab melts, respectively. As a consequence, the elemental and isotopic trends observed in the Halberstadt data represent compositional variability arising from differing source regions and also slightly different degrees of partial melting.

Eoarchaean HNB?

Alkali basalts are rare in Archaean greenstone–TTG belts (e.g. Condie, 1994; Polat et al., 1999; Hollings, 2002). Nevertheless, Nb-enriched basalts (NEB) and HNB are found in mid- to late (~2.7–3.12 Ga) Archaean provinces (e.g. Wyman & Hollings, 1998; Polat et al., 1999; Wyman et al., 2000, 2002; Hollings, 2002; Smithies et al., 2005; Mlekovich et al., 2007). Although compositionally heterogeneous mafic rocks are present in Eoarchaean greenstone–TTG belts (e.g. Komiya et al., 2004; Nutman et al., 2009; Jenner et al., 2013), to the best of our knowledge, NEB and HNB are absent. However, the presence of mantle-derived arc-like ultramafic dunites, island arc-like basalts and picrites and boninitic rocks in Eoarchaean strata (e.g. Condie, 1994; Hollings, 2002) supports interaction by slab melts, respectively. As a consequence, the elemental and isotopic trends observed in the Halberstadt data represent compositional variability arising from differing source regions and also slightly different degrees of partial melting.

TEC TONIC MODEL FOR GENERATING THE JTA AND HNB—AN EOARCHAEOAN ANALOGUE?

The JTA and HNB model

In this section, numbers in parentheses refer to location numbers in Fig. 14. At ~55 Ma the COP is underthrusting or subducting beneath Jamaica. It has been suggested that oceanic plateaux could be resistant to subduction (e.g. Cloos, 1993), but studies from the western Pacific and the southern Caribbean provide evidence to the contrary (van der Hilst & Mann, 1994; Mann & Taira, 2004; Taira et al., 2004). In the western Pacific the OJP collided with a previously SW-dipping subduction zone causing subduction to reverse its polarity. Subsequently, earthquake hypocentre transects show that the lower portions of the OJP have also begun to subduct to the SW (Mann & Taira, 2004; Taira et al., 2004). Van der Hilst & Mann (1994) used seismic tomography to image the COP underthrusting South America at an angle of ~17°.

Subduction of the COP explains the generation of the Mount Hibernia and Westphalia Schists in an accretionary wedge (e.g. Abbott & Bandy, 2008). The demonstration by West et al. (2014) that the Mount Hibernia samples have an immobile element composition indistinguishable from that of the COP-derived Bath–Dunrobin Volcanics shows that COP material must have begun to subduct in the latest Cretaceous. Slab rollback and/or foundering of the COP lithosphere would also generate an extensional regime in the overriding plate, which can explain the Wagwater Basin.

From 30 to 50 km depth the underthrusting COP undergoes partial melting to generate JTA magmas (1). The first of these magmas ascend and metasomatize the overlying thin mantle wedge generating armoured melt pathways into the Jamaican crust. Thereafter, oceanic plateau-derived JTA melts can ascend, have limited interaction with the overlying peridotite, and finally undergo variable amphibole-dominated fractional crystallization. Simultaneously, extension in the Wagwater Basin (2) allows deeper mantle material to ascend and undergo decompression partial melting. Group 1 HNB magmas are derived from deeper melting of mantle plume-like source regions (3). Group 2 lavas are derived from decompression of metasomatized mantle wedge material (4).

Can a subducting oceanic plateau undergo partial melting?

Simple P–T paths for the subducting shear zone of the underthrusting COP are shown in Fig. 15a–f; full details and results are given in Supplementary Data Table C26, Appendix C. Many studies in the literature have considered highly complex P–T paths for deeply subducting oceanic lithosphere with a well-developed overlying mantle wedge (e.g. Van Keken et al., 2002; Syracuse et al., 2010). However, our underthrusting model aims to determine the temperature of a subducting oceanic plateau shear zone down to relatively shallow depths without a thick mature overlying mantle wedge. Below ~50–65 km depth the temperature of a subducting shear zone can be, and frequently is, approximated using the analytical expressions of Peacock (1992, 1996), which are in turn derived from Molnar & England (1990). Peacock (1996) demonstrated that at pressures below...
2.1 GPa these analytical expressions generate near-identical results relative to P–T paths constructed using more complex numerical solutions. Thus, we use the same analytical expressions here so that our results can be easily compared with published subduction P–T paths at shallow depths [see Peacock (1992) for a full range of additional shallow P–T paths].

Our COP P–T paths are constructed using the most likely input parameters. These include an average convergence rate of 7.5 cm a$^{-1}$ (Kerr & Tarney, 2005), subduction angle of 17° (Van der Hilst & Mann, 1994), thermal diffusivity of 1×10^{-6} m2 s$^{-1}$ (Peacock, 1996), thermal conductivity of 1.69 W m$^{-1}$ K$^{-1}$ (Coffin et al., 2000; Frey et al., 2000) and a heat flow measurement of 0.062 W m$^{-2}$ (Anderson et al., 1977). Shear stresses increase proportionally with pressure and calculations assume a density of 3000 kg m$^{-3}$ and acceleration due to gravity of 9.8 m s$^{-2}$. Arguably, the two least well-known variables are convergence rate and heat flow, and these are varied in Fig. 15b–f. It should be noted that we have included shear stresses in our models so that the P–T paths attain higher temperatures at a given pressure with higher convergence velocities. We also recognize that estimates of shear stress vary greatly from zero to >100 MPa (e.g. Peacock, 1996) and, as such, we model a range of shear stresses in Fig. 15.

Figure 15a–c shows that a subducting COP shear zone will intersect the amphibole dehydration partial melt region at ~ 1.0–1.6 GPa, for shear stresses from just under 5% to a little over 10%, depending on convergence rate. Similarly, with a higher heat flow and convergence rates from 5–10 cm a$^{-1}$, the top of the COP slab will intersect the fluid-absent partial melt zone at shear stresses from just under 3.5% to a little over 7.5%. Therefore, a shallow subducting oceanic plateau can theoretically undergo partial melting to generate the JTA (and TTG-like magmas) from ~ 1.0 to 1.6 GPa.

Derivation of early Archaean continents: an Eoarchaean tectonic model

The upper mantle in the early Archaean (\sim3.5 Ga) was hotter and more fertile than today (e.g. Herzberg et al., 2010; Moyen & van Hunen, 2012) and if it underwent decompression partial melting in early spreading ridges, thicker Archaean oceanic crust would be generated (e.g. Abbott et al., 1994; Kerrich & Polat, 2006; Herzberg et al., 2010). As a result, early Archaean oceanic crust may have been compositionally and physically similar to Mesozoic oceanic plateaux (Tarney & Jones, 1994; Kusky & Polat, 1999; White et al., 1999; Smithies et al., 2003, 2009; Kerrich & Polat, 2006).

Although not supported by all workers (e.g. Hamilton, 1998), many studies have proposed that the compositional and structural characteristics of rocks in early to late Archaean (e.g. ~ 3.8–2.5 Ga) greenstone...
Fig. 15. Calculated P–T paths for a subducting COP shear zone. (a) Geothermal gradients are constructed using the most likely input parameters, which include $Q_0 = 0.062 \text{ W m}^{-2}$, $k = 1.69 \text{ W m}^{-1} \text{ K}^{-1}$, $V = 7.5 \text{ cm a}^{-1}$, $\theta = 17^\circ$, $\kappa = 1 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$, $\rho = 3000 \text{ kg m}^{-3}$, $g = 9.8 \text{ m s}^{-2}$. (b) and (c) use the same parameters, but V is varied from 5 to 10 cm a$^{-1}$. (d–f) V is varied again and Q_0 is increased to 0.1 W m$^{-2}$. Metamorphic facies and solidus information from Peacock et al. (1994). LB, lawsonite–blueschist facies; EB, epidote-blueschist facies; GrS, greenschist facies; EC, eclogite facies; Amph, amphibolite facies; Grn, granulite facies; WS, wet basalt solidus; AD, amphibole-dehydration partial melt zone. P–T paths are labelled as percentages of lithostatic pressure.
belts can be explained in terms of subduction–accretion processes (e.g. ~2.7–3.0 Ga rocks, Superior Province: Polat et al., 1999; Hollings, 2002; ~2.7–2.9 Ga rocks, Baltic Shield: Mil’kevich et al., 2007; 3.12 Ga rocks, Pilbara Craton: Smithies et al., 2005; and ~3.7–3.8 Ga rocks of the Isua Belt, Greenland: Komiya et al., 2004; Jenner et al., 2009, 2013; Friend & Nutman, 2011).

The JTA are compositionally a modern analogue of Eoarchaean TTG. This suggests that, from a petrological and geochemical perspective, subduction and partial melting of oceanic plateaux (possible Eoarchaean oceanic crust) is a viable process to form the first stable continents. Therefore, we propose a model for the formation of Eoarchaean continental crust similar to the JTA–HNB subduction model shown in Fig. 14, but with the overriding Jamaican arc replaced by thick Eoarchaean mafic oceanic crust.

THE FIRST CONTINENTS AND CONCLUDING REMARKS

Using the JTA as a modern analogue we propose that Eoarchaean TTG suites can be derived by the following processes.

1. Shallow subduction and partial melting of thick Eoarchaean oceanic crust that has a similar composition to Mesozoic oceanic plateau basalt. Slab melts ascend and variably fractionate in the crust without interacting with a mantle wedge.
2. Partial melting of thick Eoarchaean subducting oceanic crust followed by interaction of the slab melts with a thin or discontinuous mantle wedge. Evidence for this interaction is obliterated by fractional crystallization of ferromagnesian minerals (mostly amphibole). Partial melting of the hot mantle wedge can subsequently generate Eoarchaean island arc basalts (seen as HNB in modern arcs).
3. Intracrustal partial melting of island arc-like and oceanic plateau-like Eoarchaean crust.

The generation of Eoarchaean TTGs and the first continents probably involved all three processes, but (3) is unlikely to be the dominant mechanism because of the low volumes of Eoarchaean island arc-like basalts. There is also a lack of oceanic plateau-like oceanic crust in the Eoarchaean rock record. However, the absence of thick Eoarchaean crust may be attributed to preservation problems because (1) the volume of present-day surviving Eoarchaean crust is tiny compared with the large continental cratons (Nutman et al., 2009), and (2) early oceanic crust was subducted to generate the Eoarchaean TTG and island arc-like rocks. Thus, we propose a model for the formation of Eoarchaean continental crust similar to the model in Fig. 14, but with the overriding Jamaican arc replaced by thick Eoarchaean oceanic crust. This model is similar to those proposed by Smithies et al. (2003) and Martin et al. (2005), who suggested that Eoarchaean TTG magmas are formed by shallow partial melting of subducting slabs that underlie a very thin mantle wedge.

Melting of oceanic plateaux has also been proposed in vertical growth–basal anatexis models that do not advocate subduction zones (e.g. Bédard et al., 2013; Zhang et al., 2013) and our choice of mafic source region generates geochemical results similar to models that propose non-subduction environments in the Eoarchaean. Therefore, our computations can also be used to support the various vertical tectonic and crustal fusion models in the literature. However, because we use the formation of the JTA as a modern analogue for early TTG, our preferred model for generating Eoarchaean TTG suites does involve the partial melting of shallow subducting oceanic plateau-like crust. Consequently, we tentatively suggest that Eoarchaean continental generation requires potentially short-term (see van Hunen & Moyen, 2012) subduction–accretion processes.

ACKNOWLEDGEMENTS

The authors are grateful to Ali Polat, Jean Bédard and Thorsten Nagel for very constructive and patient reviews that improved the paper.

FUNDING

A.R.H. acknowledges NERC Fellowship NE/J019372/1. The funding for the radiogenic isotope work at Durham University was partly obtained via a small grant from the Centre for Earth and Environmental Science Research at Kingston University, London.

SUPPLEMENTARY DATA

Supplementary data for this paper are available at Journal of Petrology online.

REFERENCES

