Durham Research Online

Deposited in DRO:
23 July 2018

Version of attached file:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Further information on publisher’s website:
https://doi.org/10.1039/C8RE00116B

Publisher’s copyright statement:

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Flow Synthesis of Coumalic Acid and its Derivatization

Laura K. Smith and Ian R. Baxendale

Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK.

Tel: +44 191 334 2185; email: i.r.baxendale@dur.ac.uk.

Contents

1 Experimental ............................................................................................................................................. 3
  1.1 Equipment and materials .................................................................................................................. 3
  1.2 Experimental configurations of the flow reactors ............................................................................. 4
  1.3 Continuous flow syntheses for coumalic acid and methyl coumalate ............................................... 5
  1.4 Coumalic acid ....................................................................................................................................... 6
  1.5 Methyl coumalate ............................................................................................................................... 6
  1.6 Methyl 1,1'-biphenyl-4-carboxylate ................................................................................................. 7
  1.7 Methyl 4-(2-phenylethyl)benzoate .................................................................................................... 8
  1.8 Dimethyl 1,1':3',1''-terphenyl-4,4''-dicarboxylate .............................................................................. 8
  1.9 Methyl 1,1'-biphenyl-3-ethynyl-4''-carboxylate ................................................................................. 9
  1.10 Dimethyl 1,1':4',1''-terphenyl-4,4''-dicarboxylate .............................................................................. 9
  1.11 Methyl 1,1'-biphenyl-4-ethynyl-4''-carboxylate .............................................................................. 10
  1.12 (3E,3'E)-3,4'-[(1,3-Phenylene)bis(but-3-en-2-one)] .......................................................................... 11
  1.13 (1E,1'E)-(1,3-phenylene)bis(ethene-2,1-diyl) diacetate ................................................................. 11
  1.14 (3E,3'E)-4,4'-[(1,4-Phenylene)bis(but-3-en-2-one)] .......................................................................... 12
  1.15 (1E,1'E)-1,4-(phenylene)bis(ethene-2,1-diyl) diacetate ................................................................. 12
  1.16 (E)-2-Phenylvinyl acetate .............................................................................................................. 13
  1.17 Methyl 1,1'-biphenyl-3-carboxylate ............................................................................................... 13
2 Calibration data ........................................................................................................................................ 14
3 Calculations and statistical analysis ................................................................................................... 14
  3.1 Calculation of conversion .................................................................................................................. 14
  3.2 Calculation of throughput and space-time yield ................................................................................ 15
4 Spectral data .......................................................................................................................................... 17
  4.1 Coumalic acid .................................................................................................................................... 17
  4.2 Methyl coumalate ............................................................................................................................. 18
  4.3 Methyl 1,1'-biphenyl-4-carboxylate ............................................................................................... 19
  4.4 Methyl 4-(2-phenylethyl)benzoate ................................................................................................. 20
  4.5 Dimethyl 1,1':3',1''-terphenyl-4,4''-dicarboxylate ............................................................................ 22
4.6 Methyl 1,1’-biphenyl-3-ethynyl-4”-carboxylate ................................................................. 23
4.7 Dimethyl 1,1’:4’,1”-terphenyl-4,4”-dicarboxylate ................................................................... 25
4.8 Methyl 1,1’-biphenyl-4-ethynyl-4”-carboxylate ................................................................. 28
4.9 (3E,3’E)-3,4’-(1,3-Phenylene) bis(but-3-en-2-one) .............................................................. 29
4.10 (1E,1’E)-1,3-phenylene bis(ethene-2,1-diyl) diacetate ......................................................... 31
4.11 (3E,3’E)-4,4’-(1,4-Phenylene) bis(but-3-en-2-one) ............................................................ 32
4.12 (1E,1’E)-1,4-phenylene bis(ethene-2,1-diyl) diacetate ......................................................... 34
4.13 (E)-2-Phenylvinyl acetate .................................................................................................... 35
4.14 Methyl 1,1’-biphenyl-3-carboxylate .................................................................................... 36

References .................................................................................................................................. 38
1 Experimental

1.1 Equipment and materials
Solvents were obtained from Fisher Scientific, and H$_2$O was deionised before use. MeOH (analytical reagent grade) and MeCN (HPLC grade) were used as supplied.

$^1$H NMR spectra were recorded on a Bruker Avance-400 (400 MHz) or a Varian VNMRS-700 (700 MHz) spectrometer. Chemical shift values are given in units $\delta$ relative to residual protic solvent. The multiplicity of the signal is indicated as: br – broad, s – singlet, d – doublet, t – triplet, q – quartet and m – multiplet, dd – doublet of doublets, dt – doublet of triplets, etc. Coupling constants ($J$) were measured to the nearest 0.1 Hz.

$^{13}$C NMR spectra were recorded on a Bruker Avance-400 (101 MHz) or a Varian VNMRS-700 (127 MHz) spectrometer with broadband proton decoupling using the deuterated solvent as the internal deuterium lock. Chemical shift data are given in units $\delta$ relative to the residual protic solvent.

Liquid chromatography-mass spectrometry was performed using a TQD mass spectrometer (Waters UK, Ltd.). Elution was carried out at a flow rate of 0.6 mL/min using a reverse phase gradient of MeCN–water containing 0.1% formic acid. Gradient = 0–1 min: hold MeCN 5%, 1–4 min: ramp MeCN 5–95%, 4–5 min: hold MeCN 95%, 5–7 min: ramp MeCN 95–5%, 7–8 min: hold MeCN 5%. Retention times are reported as $R_t$. High resolution mass spectra (HRMS) were recorded on a Waters Acquity LCT premier XE spectrometer using time of flight with positive electrospray ionisation (ESI$^+$). The masses reported are those containing the most abundant isotopes ($^{79}$Br).

Infrared spectra were measured on a Perkin-Elmer Paragon 1000 FT-IR spectrometer fitted with a Diamond attenuated total reflection (ATR) accessory (Golden Gate). Letters in parentheses refer to the relative absorbency of the peak: w – weak (<40% of the most intense peak), m – medium (40–75% of the most intense peak), s – strong (>75% of the most intense peak).
1.2 Experimental configurations of the flow reactors

Figure S1 – Configuration of the Vapourtec flow reactor for the synthesis of coumalic acid.
1.3 Continuous flow syntheses for coumalic acid and methyl coumalate

Optimisation reactions were carried out in a Vapourtec E-MedChem reactor system coupled with a Masterflex L/S external peristaltic pump with Masterflex C-Series tubing (size 13). Stock solutions were prepared at a concentration of 100 g malic acid per 200 mL of concentrated H$_2$SO$_4$ (3.73 mol dm$^{-3}$) and heated at 40 °C for 30 mins immediately prior to reaction to ensure the malic acid has fully dissolved (note: reaction does not occur at this temperature). The stock solution was then pumped at a defined flow rate into two sequential 10 mL PFA reactors heated to 120 °C (3 mins residence time). The product stream containing the crude coumalic acid was collected into a flask, to which methanol was constantly added via a second pump at a defined flow rate. This stirred solution was pumped at a defined flow rate into a 8.25 mL Polar Bear Plus reactor heated at 90 °C (9 mins residence time). The exiting product stream containing methyl coumalate was collected as a batch and quenched and H$_2$O was added, resulting in the formation of a precipitate of the crude product which was isolated by filtration.
1.4 Coumalic acid

![Chemical Structure of Coumalic Acid]

Chemical Formula: $C_6H_4O_4$
Exact Mass: 140.01

Example batch procedure:

Malic acid (200.0 g, 1.49 mol) was charged to a 1 L RBF fitted with a stirrer. Concentrated sulfuric acid (400 mL, 7.50 mol) was charged to the RBF. The resulting slurry was heated at 90 °C with stirring for 6 h, during which time significant foaming was observed. The orange solution was allowed to cool to RT, then poured onto ice (900 mL), and stored in the freezer overnight. Formation of a yellow precipitate was observed. After filtration and washing with H$_2$O, the wet solid was dried on top of an oven (temperature approx. 50 °C) before drying under vacuum. The crude material was isolated as a pale yellow solid.

Isolated yield: 50.8 g (362.8 mmol, 49%).

$^1$H NMR (700 MHz, d$_6$-DMSO): $\delta$/ppm 6.37 (1 H, dd, $J = 9.8, 1.1$ Hz, H2), 7.77 (1 H, dd, $J = 9.7, 2.6$ Hz, H3), 8.49 (1 H, dd, $J = 2.6, 1.1$ Hz, H5);

$^{13}$C NMR (176 MHz, d$_6$-DMSO): $\delta$/ppm 112.5 (C4), 115.0 (C2), 143.0 (C3), 159.3 (C5), 160.4 (C1), 164.7 (C6).

IR (neat) $\nu$ = 2958.0 (O-H, br w), 1699.8 (C=O, s), 1544.5 (m), 1404.5 (m), 1226.3 (C-O, s), 1130.1 (m), 1097.3 (C-O, s), 952.1 (m), 847.8 (m), 772.8 (s), 617.9 (m), 526.7 (m) cm$^{-1}$.

LC-MS: $R_t$ = 0.92 min, m/z 138.9 [M-H]$^-$.

HR-MS calculated for C$_6$H$_4$O$_4$ at 139.0031, found 139.0020 ($\Delta = -7.9$ ppm).

Decomposition by 150.0 °C (MeOH).

Reference$^1$

1.5 Methyl coumalate

![Chemical Structure of Methyl Coumalate]

Chemical Formula: $C_7H_6O_4$
Exact Mass: 154.03

Example procedure for the one-pot, two-step batch procedure from malic acid:

Malic acid (125.0 g, 933 mmol) was charged to a 1 L RBF fitted with a stirrer. Concentrated H$_2$SO$_4$ (250 mL, 4690 mmol) was slowly charged to the RBF, and the resulting slurry was heated to 90 °C for 3 h, during which time frothing was observed. The solution was cooled to RT, then lowered into an
ice bath. MeOH (160 mL, 3960 mmol) was charged dropwise over 15 mins. The solution was then heated at 90 °C for a further 2.5 h. The solution was allowed to cool to RT, then poured over ice and left overnight. Precipitation of the product was not observed. The orange solution was extracted with H2O and DCM (100 mL x 3). The organic fractions were combined, and the volume reduced in vacuo to give the crude product as a yellow solid. Recrystallisation from EtOAc gave the product as a pale yellow solid in two crops, which were dried in vacuo.

Isolated yield: 38.26 g (124 mmol, 54%).

\[^{1}\text{H}\text{ NMR (700 MHz, CDCl}_3\text{): }\delta/\text{ppm 3.87 (3 H, s, H7), 6.33 (1 H, dd, } J = 9.8, 1.1 \text{ Hz, H2), 7.77 (1 H, dd, } J = 9.8, 2.6 \text{ Hz, H3), 8.29 (1 H, dd, } J = 2.6, 1.1 \text{ Hz, H5);}\]

\[^{13}\text{C NMR (126 MHz, CDCl}_3\text{): }\delta/\text{ppm 52.4 (C7), 111.9 (C4), 115.3 (C2), 141.6 (C3), 158.1 (C5), 159.8 (C1), 163.4 (C6).}\]

IR (neat) \(\nu = 1706.4 \text{ (C=O, s), 1544.8 (w), 1440.4 (m), 1298.8 (m), 1238.0 (s), 1084.6 (C-O, m), 948.1 (m), 839.1 (m), 773.2 (s), 630.0 (w) cm}^{-1}.\]

LC-MS: \(R_t = 1.04 \text{ min, m/z 155.3 } [\text{MH}^+]\).

HR-MS calculated for \(\text{C}_7\text{H}_7\text{O}_4\) at 155.0344, found 155.0347 (\(\Delta = +1.9 \text{ ppm}\)).

Melting point: 65.4-69.0 °C (EtOAc).

Reference\(^2\)

1.6 Methyl 1,1'-biphenyl-4-carboxylate

**Example preparation:** Methyl coumalate (1.56 g, 10 mmol) and 1,3-diethynylbenzene (1.4 mL, 10 mmol) were charged to a 20 mL Biotage microwave vial fitted with a stirrer, followed by 1,4-dioxane (20 mL). The vial was capped, sealed and heated to 200 °C for 4 h with 5 mins pre-stirring in the microwave. The reaction mixture was transferred to a round bottom flask containing 10 g of silica and the solvent evaporated to dryness. The material was purified by column chromatography using 9:1 hexane:EtOAc.

![Chemical structure](image)

Chemical Formula: \(\text{C}_{14}\text{H}_{12}\text{O}_2\)

Molecular Weight: 212.25

Isolated as a white solid in 93% yield following column chromatography (9:1 hexane:EtOAc).

\[^{1}\text{H NMR (400 MHz, DMSO-d}_6\text{): }\delta 8.08 – 8.01 (m, 2H), 7.85 – 7.79 (m, 2H), 7.76 – 7.71 (m, 2H), 7.54 – 7.47 (m, 2H), 7.46 – 7.40 (m, 1H), 3.88 (s, 3H).\]

\[^{13}\text{C NMR (101 MHz, DMSO): }\delta 166.50 (C), 145.13 (C), 139.27 (C), 130.26 (CH), 129.55 (CH), 128.89 (C), 128.86 (CH), 127.43 (CH), 127.40 (CH), 52.61 (CH).\]

IR (neat) \(\nu = 1708.1 \text{ (s), 1604.9 (w), 1435.6 (m), 1404.1 (w), 1286.1 (s), 1267.6 (s), 1193.1 (m), 111.2 (s), 1003.2 (w), 961.1 (w), 857.0 (m), 744.6 (s), 699.4 (s), 688.3 (m) cm}^{-1}.\)
RCE: Continuous Flow Synthesis of Coumalic Acid and its Derivatives

LC-MS: Rt = 2.95 m/z 213.5 (M+H).
HR-MS (ES+) calculated for C_{14}H_{13}O_2 at 213.0923, found 213.0916 (Δ = 3.3 ppm).
Melting point: 114.5-116.5 °C (EtOAc). Literature 117-118 °C (Methanol).
Reference

1.7 Methyl 4-(2-phenylethyl)benzoate

\[
\text{Chemical Formula: } C_{15}H_{16}O_2 \\
\text{Molecular Weight: } 240.30
\]

Isolated as a clear liquid in 91% yield following column chromatography (9:1 hexane:EtOAc).

\(^1\)H NMR (400 MHz, DMSO-\text{d}_6) \delta 7.91 – 7.85 (m, 2H), 7.38 – 7.31 (m, 2H), 7.30 – 7.13 (m, 5H), 3.83 (s, 3H), 2.91 (m, 4H).

\(^{13}\)C NMR (101 MHz, DMSO) \delta 166.63 (C), 147.75 (C), 141.52 (C), 129.60 (CH), 129.19 (CH), 128.80 (CH), 128.66 (CH), 127.79 (C), 126.34 (CH), 52.35 (CH_3), 37.41 (CH_2), 36.98 (CH_2).

IR (neat) \nu = 1717.11 (s), 1620.5 (w), 1434.5 (m), 1275.2 (m), 1192.7 (w), 1178.3 (m), 1107.5 (m), 1020.1 (w), 754.0 (m), 697.1 (s), 521.7 (w) cm\(^{-1}\).

LC-MS: Rt = 3.19 m/z 242.0 (M+H).
HR-MS (ES+) calculated for C_{16}H_{17}O_2 at 241.1240, found 241.1229 (Δ = 4.6 ppm).
Reference

1.8 Dimethyl 1,1':3',1''-terphenyl-4,4''-dicarboxylate

Procedure:\(^{1,4}\)

\[
\text{Chemical Formula: } C_{22}H_{18}O_4 \\
\text{Molecular Weight: } 346.38
\]

Isolated as a white solid.

\(^1\)H NMR (400 MHz, DMSO-\text{d}_6) \delta 8.11 – 8.03 (m, 5H), 7.95 (d, J = 8.4 Hz, 4H), 7.79 (dd, J = 7.7, 1.8 Hz, 2H), 7.63 (t, J = 7.7 Hz, 1H), 3.89 (s, 6H).

\(^{13}\)C NMR (101 MHz, DMSO) \delta 166.51 (C), 144.85 (C), 140.16 (C), 130.36 (CH), 130.24 (CH), 129.13 (C), 127.74 (CH), 127.51 (CH), 126.13 (CH), 52.65 (CH_3).
IR (neat) ν = 1717.1 (s), 1520.1 (w), 1480.3 (s), 1279.8 (s), 1189.7 (m), 1107.0 (s), 758.6 (s), 699.5 (m) cm⁻¹.

LC-MS: Rt = 3.60 m/z 347.2 (M+H).

HR-MS (ES+) calculated for C₂₂H₁₉O₂ at 347.1273, found 347.1283 (Δ = -2.9 ppm).

Melting point: 187.4-189.9 °C (EtOAc), literature = 192 °C (AcOH).

Reference [5]

1.9 Methyl 1,1′-biphenyl-3-ethynyl-4″-carboxylate

![Chemical Structure Image]

Chemical Formula: C₁₉H₁₂O₂
Molecular Weight: 296.27

Isolated as a white solid.

¹H NMR (400 MHz, DMSO-d₆) δ 8.07 – 8.01 (m, 2H), 7.88 – 7.82 (m, 3H), 7.78 (dt, J = 6.7, 2.1 Hz, 1H), 7.58 – 7.47 (m, 2H), 4.29 (s, 1H), 3.88 (s, 3H).

¹³C NMR (101 MHz, DMSO) δ 166.42 (C), 143.96 (C), 139.74 (C), 132.00 (CH), 130.48 (CH), 130.27 (CH), 129.98 (CH), 129.29 (C), 128.08 (CH), 127.55 (CH), 123.05 (C), 83.64 (C), 81.73 (CH), 52.64 (CH₃).

IR (neat) ν = 3260.7 (m), 1707.3 (s), 1604.4 (w), 1430.6 (m), 1276.8 (s), 1196.4 (m), 1111.0 (s), 1014.9 (w), 956.8 (w), 858.8 (m), 801.5 (s), 765.8 (s), 699.2 (s), 671.6 (s), 606.1 (s) cm⁻¹.

LC-MS: Rt = 3.02 m/z 237.2 (M+H).

HR-MS (ES+) calculated for C₁₆H₁₃O₂ at 237.0920, found 237.0916 (Δ = 1.7 ppm).

Melting point: 109.0-110.2 °C.

1.10 Dimethyl 1,1′:4′,1″-terphenyl-4,4″-dicarboxylate

![Chemical Structure Image]

Chemical Formula: C₂₂H₁₈O₄
Molecular Weight: 346.38

Isolated as a white solid.
H NMR (700 MHz, d$_6$-DMSO): δ/ppm 8.09 – 7.97 (m, 4H), 7.93 – 7.82 (m, 6H), 3.86 (s, 3H), 3.54 (s, 3H).

$^{13}$C NMR (175 MHz, d$_6$-DMSO) δ/ppm 167.52 (C), 166.47 (C), 144.32 (C), 139.31 (C), 130.45 (CH), 130.30 (CH), 128.08 (CH), 128.07 (CH), 127.35 (CH), 127.20 (CH), 66.79 (CH$_3$), 52.63 (CH$_3$).

IR (neat) ν = 1718.2 (s), 1431.8 (m), 1398.5 (m), 1297.5 (m), 1274.2 (s), 1193.2 (s), 1109.1 (s), 1016.3 (w), 952.9 (w), 828.3 (s), 760.9 (s), 693.7 (m) cm$^{-1}$.

LC-MS: R$_t$ = 3.43 m/z 347.4 (M+H).

HR-MS (ES+) calculated for C$_{22}$H$_{19}$O$_2$ at 347.1290, found 347.1283 (Δ = 2.0 ppm).

Melting point: >250 °C.

Reference$^6$

1.11 Methyl 1,1'-biphenyl-4-ethynyl-4''-carboxylate

O

\[
\begin{array}{c}
\text{Chemical Formula: C}_{18}\text{H}_{12}\text{O}_2 \\
\text{Molecular Weight: 236.27}
\end{array}
\]

Isolated as a white solid.

$^1$H NMR (400 MHz, DMSO-$d_6$) δ 8.09 – 7.97 (m, 2H), 7.90 – 7.83 (m, 2H), 7.82 – 7.73 (m, 2H), 7.66 – 7.55 (m, 2H), 4.32 (s, 1H), 3.88 (s, 3H).

$^{13}$C NMR (101 MHz, DMSO) δ 166.41 (C), 143.99 (C), 139.54 (C), 132.86 (CH), 130.31 (CH), 129.28 (C), 127.66 (CH), 127.45 (CH), 122.19 (C), 83.60 (C), 82.50 (CH), 52.66 (CH$_3$).

IR (neat) ν = 3257.5 (m), 1710.3 (s), 1600.7 (w), 1434.6 (m), 1399.4 (m), 1295.0 (s), 1283.7 (s), 1270.5 (s), 1220.7 (m), 1191.7 (m), 1112.6 (s), 1017.9 (w), 1002.8 (w), 953.7 (w), 832.0 (s), 770.9 (s), 696.8 (m) cm$^{-1}$.

LC-MS: R$_t$ = 3.05 m/z 237.2 (M+H).

HR-MS (ES+) calculated for C$_{16}$H$_{14}$O$_2$ at 237.0925, found 237.0916 (Δ = 3.8 ppm).

Melting point: 149.6-151.2 °C.

Reference$^{10}$
RCE: Continuous Flow Synthesis of Coumalic Acid and its Derivatives

1.12 \((3E,3'E)-3,4'-(1,3\text{-Phenylene})\text{bis}(\text{but-3-en-2-one})\)
Synthesised following the literature procedure:\(^{11}\)

\[
\begin{array}{c}
\text{O} \\
\begin{array}{c}
\text{C} \\
\text{H} \\
\text{C}
\end{array}
\end{array}
\]

Chemical Formula: \(C_{14}H_{14}O_2\)
Molecular Weight: 214.26

Pale yellow solid, isolated in 80\% yield on a 500 mmol scale.

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta 7.68 (d, J = 1.9 \text{ Hz}, 1\text{H}), 7.59 - 7.46 (m, 4\text{H}), 7.46 - 7.39 (m, 1\text{H}), 6.74 (dd, J = 16.3, 1.8 \text{ Hz}, 2\text{H}), 2.38 (d, J = 1.3 \text{ Hz}, 6\text{H}).\)

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 198.01 (\text{C}), 142.23 (\text{CH}), 135.23(\text{C}), 129.82 (\text{CH}), 129.61 (\text{CH}), 127.96 (\text{CH}), 127.90 (\text{CH}), 27.71 (\text{CH}_3).\)

IR (neat) \(\nu = 1671.7 \text{ (m), } 1647.6 \text{ (s), } 1619.5 \text{ (m), } 1357.9 \text{ (m), } 1332.3 \text{ (w), } 1297.7 \text{ (w), } 1264.0 \text{ (s), } 1241.1 \text{ (s), } 1162.4 \text{ (w), } 980.6 \text{ (s), } 784.0 \text{ (s), } 690.6 \text{ (m), } 566.7 \text{ (s) cm}^{-1}.\)

EI GC non polar compounds Rt 5.53 m/z 214.1.

Melting point: 100.8-102.0 °C.

Reference:\(^{13}\)

1.13 \((1E,1'E)-(1,3\text{-phenylene})\text{bis}(\text{ethene-2,1-diyl}) \text{diacetate}\)
Synthesised following the literature procedure:\(^{12}\)

\[
\begin{array}{c}
\text{O} \\
\begin{array}{c}
\text{C} \\
\text{H} \\
\text{C}
\end{array}
\end{array}
\]

Chemical Formula: \(C_{14}H_{14}O_4\)
Molecular Weight: 246.2620

White solid, isolated in 64\% yield on a 50 mmol scale.

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta 7.87 (d, J = 12.8 \text{ Hz}, 2\text{H}), 7.37 - 7.14 (m, 4\text{H}), 6.39 (d, J = 12.8 \text{ Hz}, 2\text{H}), 2.22 (s, 6\text{H}).\)

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 167.96 (\text{C}), 136.51 (\text{CH}), 134.60 (\text{C}), 129.06 (\text{CH}), 125.16 (\text{CH}), 124.19 (\text{CH}), 114.93 (\text{CH}), 20.74 (\text{CH}_3).\)

IR (neat) \(\nu = 1735.5 \text{ (m), } 1656.3 (\text{w), } 1364.1 (\text{m), } 1217.6 (\text{s), } 1119.0 (\text{m), } 1081.3 (\text{s), } 1049.1 (\text{m), } 931.6 \text{ (s), } 793.4 (\text{m), } 650.1 (\text{m), } 598.3 (\text{m), } 540.9 (\text{m) cm}^{-1}.\)

Melting point: 72.5.0-74.4 °C.
1.14  \((3E,3'E)-4,4'(1,4-\text{Phenylene})\text{bis}(\text{but-3-en-2-one})\)
Synthesised following the literature procedure:\textsuperscript{11}

![Chemical Structure]

Chemical Formula: \(C_{14}H_{12}O_2\)
Molecular Weight: 214.26

Pale yellow solid, isolated in 83\% yield on a 500 mmol scale.

\(^1H\) NMR (400 MHz, Chloroform-\text{d}) \(\delta\) 7.61 – 7.56 (m, 4H), 7.50 (d, \(J = 16.2\) Hz, 2H), 6.76 (dt, \(J = 16.2, 0.8\) Hz, 2H), 2.40 (d, \(J = 0.8\) Hz, 6H).

\(^13C\) NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 198.06 (C), 142.03 (CH), 136.41 (C), 128.76 (CH), 128.00 (CH), 27.72 (CH\textsubscript{3}).

IR (neat) \(\nu = 1662.0\) (s), 1639.8 (s), 1622.7 (m), 1413.6 (w), 1357.8 (m), 1413.6 (w), 1325.0 (w), 1256.3 (m), 1200.1 (w), 1010.5 (w), 981.2 (s), 971.1 (s), 877.7 (w), 809.2 (s), 802.0 (s), 589.1 (w), 559.7 (m), 497.6 (m) cm\textsuperscript{-1}.

El GC non polar compounds Rt 5.59 m/z 214.1.

Melting point: 149.3-152.0 \(^\circ\)C.

Reference:\textsuperscript{14}

1.15  \((1E,1'E)-1,4-(\text{phenylene})\text{bis}(\text{ethene-2,1-diyl})\) diacetate
Synthesised following the literature procedure:\textsuperscript{12}

![Chemical Structure]

Chemical Formula: \(C_{14}H_{14}O_4\)
Molecular Weight: 246.2620

White solid, isolated in 83\% yield on a 50 mmol scale.

\(^1H\) NMR (400 MHz, Chloroform-\text{d}) \(\delta\) 7.87 (d, \(J = 12.8\) Hz, 2H), 7.29 (s, 4H), 6.38 (d, \(J = 12.8\) Hz, 2H), 2.21 (s, 6H).

\(^13C\) NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 167.93 (C), 136.21 (CH), 133.27 (C), 126.52 (CH), 114.86 (CH), 20.73 (CH\textsubscript{3}).

IR (neat) \(\nu = 1745.5\) (s), 1431.2 (m), 1209.8 (s), 1176.0 (m), 1110.1 (m), 1084.3 (s), 1043.3 (m), 949.7 (s), 926.1 (s), 891.4 (m), 786.3 (m), 692.19 (s) cm\textsuperscript{-1}.

Melting point: 149.3-151.3 \(^\circ\)C.
1.16 (E)-2-Phenylvinyl acetate
Synthesised following the literature procedure:12

\[
\begin{align*}
\text{Chemical Formula: } & C_{12}H_{10}O_2 \\
\text{Molecular Weight: } & 162.1880
\end{align*}
\]

Small residual ethyl acetate signals are present in the spectra, and despite high vacuum drying for 48 h this could not be removed.

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.89 (d, \(J = 12.8\) Hz, 1H), 7.41 – 7.30 (m, 4H), 7.30 – 7.21 (m, 1H), 6.43 (d, \(J = 12.8\) Hz, 1H), 2.22 (s, 3H).

\(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 168.00 (C), 136.24 (CH), 134.13 (C), 128.72 (CH), 127.43 (CH), 126.23 (CH), 115.28 (CH), 20.74 (CH\(_3\)).

IR (neat) \(\nu = 1754.9\) (s), 1661.7 (w), 1369.7 (m), 1209.1 (s), 1199.4 (s), 1093.9 (s), 1070.3 (m), 929.0 (s), 820.9 (w), 749.8 (s), 691.9 (s), 594.4 (m), 509.3 (m) cm\(^{-1}\).

LC (MeCN) Rt 2.47 m/z 163.1.
HR-MS (ES+) calculated for C\(_{10}\)H\(_{11}\)O\(_2\) at 163.0759, found 163.0768 (\(\Delta = 5.5\) ppm (0.9 mDa)).

1.17 Methyl 1,1'-biphenyl-3-carboxylate

\[
\begin{align*}
\text{Chemical Formula: } & C_{14}H_{12}O_2 \\
\text{Molecular Weight: } & 212.2480
\end{align*}
\]

\(\beta\)-Methoxystyrene; CAS 4747-15-3, was purchased from Sigma Aldrich chemicals as a mixture of cis and trans isomers, technical grade, 90% and was used as supplied.

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.33 (t, \(J = 1.7\) Hz, 1H), 8.06 (dt, \(J = 7.7, 1.4\) Hz, 1H), 7.82 (dt, \(J = 7.7, 1.5\) Hz, 1H), 7.66 (dt, \(J = 8.1, 1\) Hz, 2H), 7.58 – 7.46 (m, 3H), 7.44 – 7.37 (m, 1H), 3.98 (s, 3H).

\(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 167.05 (C), 141.48 (C), 140.12 (C), 131.54 (CH), 130.71 (C), 128.91 (CH), 128.87 (CH), 128.36 (CH), 128.28 (CH), 127.76 (CH), 127.17 (CH), 52.20 (CH\(_3\)).

IR (neat) \(\nu = 1718.2\) (s), 1454.2 (w), 1435.3 (m), 1299.6 (s), 1239.0 (s), 1110.0 (m), 1088.7 (w), 1049.0 (w), 739.2 (s), 694.5 (s), 671.4 (w), 614.3 (w) cm\(^{-1}\).

LC (MeCN) Rt 3.26 m/z 213.2.
HR-MS (ES+) calculated for C\(_{14}\)H\(_{13}\)O\(_2\) at 213.0916, found 213.0905 (\(\Delta = 5.2\) ppm (-1.1 mDa)).

Reference:15
2 Calibration data
Calibration of the Masterflex pump was performed with H₂O, conc. H₂SO₄ and the stock solution of malic acid-H₂SO₄. Adding malic acid to the conc. sulfuric acid increased the viscosity even further. It was not possible to operate the pump above a speed of ‘4’. A pump speed of ‘2’ was used in future reactions, which gave a typical flow rate of around 0.8 mL min⁻¹.

3 Calculations and statistical analysis

3.1 Calculation of conversion
The stoichiometry of the reaction gives the following equation which was used to calculate the % conversion, where CA = the integral of the peak at δ = 7.77 ppm, and MA = the integral of the peak at δ = 4.26 ppm.

\[
\text{% Conversion} = \frac{2CA}{MA + 2CA}
\]
3.2 Calculation of throughput and space-time yield

The throughput is given by:

\[
\text{Throughput} = \frac{\text{mass produced (g)}}{\text{time taken (h)}}
\]

The space-time yield is given by:

\[
\text{Space – time yield} = \frac{\text{mass (kg)}}{\text{reactor volume (m}^3\text{)} \cdot \text{time (h)}}
\]

**Batch process; See batch process page 6 200g scale.**

The throughput is calculated by:

\[
\text{Throughput} = \frac{51 \text{ g}}{6 \text{ h}} = 8.5 \text{ g h}^{-1}
\]

The reactor volume is the size of the round-bottomed flask used in the reaction (1 L). Thus, the space-time yield is:

\[
\text{Space – time yield} = \frac{0.051 \text{ kg}}{1 \times 10^{-3} \text{ m}^3 \cdot 6 \text{ h}} = 8.5 \text{ kg m}^{-3}\text{h}^{-1}
\]

**Vapourtec process (in-built pump).**
The throughput was calculated as:

\[
Throughput = \frac{5.1 \text{ g}}{1.17 \text{ h}} = 4.4 \text{ g h}^{-1}
\]

The reactor volume was assumed to be the volume of the two reactor coils plus the volume of the connecting tubing, giving a total of 25 mL. Thus, the space-time yield is given by:

\[
Space - time \ yield = \frac{0.0051 \text{ kg}}{25 \times 10^{-6} \text{ m}^3 \cdot 1.17 \text{ h}} = 174.4 \text{ kg m}^{-3} \text{ h}^{-1}
\]

**HeRo process**

Several assumptions have been made to enable calculation of the reactor volume of the HeRo reactor. These are:

- The solution is homogeneous. This is known to be inaccurate, because significant gas production is observed during the reaction.
- The film thickness is constant at 2 mm.
- The rivulet width is constant at 5 mm.
- Only a single helix is produced.
- The number of turns in the helix is 15.
- The rise of the helix in one revolution is 40 mm.
- Helical behaviour is observed for the full 600 mm of the work-tube.

The rivulet has been treated as though it is a ribbon which can be unfurled to give a cuboid (dimensions: path length x 2 mm x 5 mm). The radius of the path length can be found via the following calculation:

\[
Path \ length, D = N \sqrt{(H^2 + (2\pi r)^2) + (600 - L_h)}
\]

\[
D = 15 \sqrt{(40^2) + (36\pi)^2} = 1.8 \text{ m}
\]

Therefore the volume of the rivulet (and thus the volume of the reactor) is:

\[
Volume = 1.8 \text{ m} \cdot 2 \times 10^{-3} \text{ m} \cdot 5 \times 10^{-3} \text{ m} = 1.8 \times 10^{-5} \text{ m}^3
\]

Thus, the space-time yield of the HeRo process, calculated from the 8 h experiment is found by the following calculation:

\[
Space - time \ yield = \frac{0.2857 \text{ kg}}{1.8 \times 10^{-5} \text{ m}^3 \cdot 8 \text{ h}} = 1980 \text{ kg m}^{-3} \text{ h}^{-1}
\]

This is more than 3.5 times than the space-time yield of the Vapourtec process, and approx. 36 times the space-time yield of the most efficient batch process.

Alternatively using a more conventional calculation based upon the total volume of the glass processing tube yields a modified value of:

\[
Space - time \ yield = \frac{0.2857 \text{ kg}}{1.94 \times 10^{-4} \text{ m}^3 \cdot 8 \text{ h}} = 184.1 \text{ kg m}^{-3} \text{ h}^{-1}
\]
4 Spectral data

4.1 Coumalic acid

Coumalic acid (d6-DMSO)
4.2 Methyl coumalate

Methyl coumalate (CDCl₃)
4.3 Methyl 1,1′-biphenyl-4-carboxylate
4.4 Methyl 4-(2-phenylethyl)benzoate
RCE: Continuous Flow Synthesis of Coumalic Acid and its Derivatives
4.5 Dimethyl 1,1''-3',1''-terphenyl-4,4''-dicarboxylate
RCE: Continuous Flow Synthesis of Coumalic Acid and its Derivatives

4.6 Methyl 1,1'-biphenyl-3-ethynyl-4''-carboxylate
RCE: Continuous Flow Synthesis of Coumaric Acid and its Derivatives
4.7 Dimethyl 1,1′:4′,1″-terphenyl-4,4″-dicarboxylate
Very insoluble compound 700 MHz NMR with extended scan range for $^{13}$C:

Expanded $^1$H region showing the aromatic area.
Expanded $^{13}$C CH region showing splitting of signals.

HSQC spectra
RCE: Continuous Flow Synthesis of Coumalic Acid and its Derivatives

Expanded HSQC with dept colour editing
4.8 Methyl 1,1’-biphenyl-4-ethynyl-4’’-carboxylate
4.9 (3E,3′E)-3,4′-(1,3-Phenylene) bis(but-3-en-2-one)
4.10 (1E,1'E)-1,3-phenylene bis(ethene-2,1-diyl) diacetate
4.11 (3E,3′E)-4,4′-(1,4-Phenylene) bis(but-3-en-2-one)
RCE: Continuous Flow Synthesis of Coumalic Acid and its Derivatives

4.12 \((1E,1'E)-1,4\)-phenylene bis(ethene-2,1-diyl) diacetate
4.13 (E)-2-Phenylvinyl acetate
RCE: Continuous Flow Synthesis of Coumaric Acid and its Derivatives

4.14 Methyl 1,1'-biphenyl-3-carboxylate
RCE: Continuous Flow Synthesis of Coumalic Acid and its Derivatives
5 References