Skip to main content

Research Repository

Advanced Search

OXI1 kinase plays a key role in resistance of Arabidopsis towards aphids (Myzus persicae)

Shoala, Tahsin; Edwards, Martin G.; Knight, Marc R.; Gatehouse, Angharad M.R.

OXI1 kinase plays a key role in resistance of Arabidopsis towards aphids (Myzus persicae) Thumbnail


Authors

Tahsin Shoala

Martin G. Edwards

Angharad M.R. Gatehouse



Abstract

Plants have co-evolved with a diverse array of pathogens and insect herbivores and so have evolved an extensive repertoire of constitutive and induced defence mechanisms activated through complex signalling pathways. OXI1 kinase is required for activation of mitogen-activated protein kinases (MAPKs) and is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses. Furthermore, changes in the levels of OXI1 appear to be crucial for appropriate signalling. Callose deposition also plays a key role in defence. Here we demonstrate, for the first time, that OXI1 plays an important role in defence against aphids. The Arabidopsis mutant, oxi1-2, showed significant resistance both in terms of population build-up (p < 0.001) and the rate of build-up (p < 0.001). Arabidopsis mutants for β-1,3-glucanase, gns2 and gns3, showed partial aphid resistance, significantly delaying developmental rate, taking two-fold longer to reach adulthood. Whilst β-1,3-glucanase genes GNS1, GNS2, GNS3 and GNS5 were not induced in oxi1-2 in response to aphid feeding, GNS2 was expressed to high levels in the corresponding WT (Col-0) in response to aphid feeding. Callose synthase GSL5 was up-regulated in oxi1-2 in response to aphids. The results suggest that resistance in oxi1-2 mutants is through induction of callose deposition via MAPKs resulting in ROS induction as an early response. Furthermore, the results suggest that the β-1,3-glucanase genes, especially GNS2, play an important role in host plant susceptibility to aphids. Better understanding of signalling cascades underpinning tolerance to biotic stress will help inform future breeding programmes for enhancing crop resilience.

Citation

Shoala, T., Edwards, M. G., Knight, M. R., & Gatehouse, A. M. (2018). OXI1 kinase plays a key role in resistance of Arabidopsis towards aphids (Myzus persicae). Transgenic Research, 27(4), 355-366. https://doi.org/10.1007/s11248-018-0078-x

Journal Article Type Article
Acceptance Date May 2, 2018
Online Publication Date May 17, 2018
Publication Date May 17, 2018
Deposit Date Aug 2, 2018
Publicly Available Date Mar 28, 2024
Journal Transgenic Research
Print ISSN 0962-8819
Electronic ISSN 1573-9368
Publisher Springer
Peer Reviewed Peer Reviewed
Volume 27
Issue 4
Pages 355-366
DOI https://doi.org/10.1007/s11248-018-0078-x

Files

Published Journal Article (595 Kb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
© The Author(s) 2018.
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.





You might also like



Downloadable Citations