The effects of solvent extraction on nanoporosity of marine-continental coal and mudstone

Yu Qi1,2, Yiwen Ju1,*, Jianchao Cai1,3, Yuan Gao4, Hongjian Zhu1, Cheng Hunag1, Jianguang Wu5, Shangzhi Meng5, Wangang Chen5

1 Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
2 Durham University, Department of Earth Sciences, Science Labs, Durham, DH1 3LE, UK
3 Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
4 Beijing Center for Physical & Chemical Analysis, Beijing 100089, China
5 China United Coalbed Methane Co Ltd, Beijing 100011, China

* Corresponding author: juyw03@163.com (Y. Ju).

Abstract

Coal and organic-rich mudstone develop massive nanopores, which control the storage of adsorbed and free gas, as well as fluid flows. Generation and retention of bitumen and hydrocarbons of oil window reservoirs add more uncertainty to the nanoporosity. Solvent extraction is a traditional way to regain unobstructed pore networks but may cause additional effects due to interactions with rocks, such as solvent adsorbing on clay surfaces or absorbing in kerogens. Selected marine-continental coal and mudstone in Eastern Ordos Basin were studied to investigate how pore structures are affected by these in-situ-sorptive compounds (namely residual bitumen and hydrocarbons) and altered by solvent extractions. Solvent extraction was performed to obtain bitumen-free subsamples. Organic petrology, bulk geochemical analyses and gas chromatography were used to characterize the samples and the extracts. Low pressure argon and carbon dioxide adsorptions were utilized to characterize the nanopore structures of the samples before and after extraction. The samples, both coal and mudstone, are in oil windows, with vitrinite reflectance ranging from 0.807 to 1.135 %. The coals are strongly affected by marine organic input, except for sample C-4; the mudstones are sourced by either marine or terrestrial organic input, or their mixture. As for the coals affected by marine organic input, residual
bitumen and hydrocarbons occupying or blocking pores < 10 nm becomes weak with thermal maturation. Bitumen derived from terrestrial organic matter mainly affects small pores, since coal asphaltene molecules are much smaller than petroleum asphaltene molecules. The mudstone M-2 with high extract production showed an increase of nanopores after extraction, due to the exposure of the filled or blocked pores. However, most transitional mudstones saw decreases of the pores because pore shrinkage caused by solvents adsorbing on and swelling clay minerals (mainly kaolinite and illite/smectite mixed layers) counteracts the released pore spaces. Solvent extractions on the coals significantly increased the micropores < 0.6 nm, since the heat of sorption of alkanes reaches the peak in the pores within 0.4-0.5 nm. By contrast, solvent extractions on the mudstones decreased the micropores ~ 0.35 nm, which is perhaps caused by evaporative drying of solvent displacing residual water in clay.

Key words
Coal; Mudstone; Marine-continental facies; Extraction; Bitumen; Nanopore

1 Introduction

Unconventional reservoirs are enriched with organic matter and share many characteristics of sealing units, including small pore size, low porosity and permeability [1, 2]. Pore networks of sediments in petroleum systems control the storage of adsorbed and free gas and fluid flows, which determine whether the sediments can be a reservoir or a cap rock. There have been studies on how pore structures are affected by lithology, mineralogy, total organic carbon (TOC), thermal maturity, fabric and diagenetic history [3-9], and how pore structures control the gas storage and migration [10-14]. Traditional and state-of-the-art experiments have been used to characterize porosity of fine-grained reservoirs.

Generation and retention of bitumen and hydrocarbon add more uncertainty to porosity of unconventional reservoirs in oil window. These *in-situ* sorptive compounds (namely residual bitumen and hydrocarbons) condensed or adsorbed on the pores and thus change gas storage capacity [15].
Additionally, the alternation of porosity further changes the thermal and electrical conductivity, which have numerous applications in reservoir engineering and petrophysics [16-22]. Due to the abundance of bitumen, there is no correlation between microporosity and TOC in thermally immature shale [23, 24]. Solid-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the bulk chemical and structural information of bitumen and kerogen [25-27]. Synchrotron-based scanning transmission X-ray microscopy (STXM) combined with X-ray absorption near edge structure (XANES) spectra provides spatially-resolved geochemical information of bitumen and nanoporous pyrobitumen as a response to the thermal evolution of kerogen [28]. Residual bitumen infilling causes the absence of original organic pores, which has been verified by imaging unextracted and extracted mudstones [29, 30].

As for early mature or mature lacustrine shale, the residual bitumen in pores dramatically affects the pore structures and methane sorption [31]. Specific surface areas and pore volumes of marine and lacustrine shale generally increase after solvent extraction, apart from a few exceptions in marine shale [27, 31-34]. Bitumen-free porosity of shales after solvent extraction are higher than those measured in as-received samples, and bitumen-filled porosity decreases with thermal maturity [5]. All previous studies focused on oil prone mudstones (including lacustrine and marine mudstones), while transitional coal and mudstone were rarely reported. Compositions and textures of both organic matter and minerals of transitional sediments are much different from those of marine or lacustrine mudstones. For examples, transitional coal and mudstone may be sourced by a mixture of terrestrial and marine organic input. Additionally, high kaolinite content is a major feature of marine-continental or coal-bearing mudstone [35, 36].

Solvent extraction is suggested to be conducted to ensure that pore throats are unobstructed [32, 37]. However, chemical and physical interactions between solvent and kerogen or between solvent and minerals may alter the pore structure and cause inaccurate “real porosity” (porosity free of hydrocarbons and soluble bitumen). For examples, 1) Solvent extraction causes swelling of clay and kerogen; 2) solvent absorbs in organic matter and/or adsorbs on clay surfaces; 3) solvent extraction may completely or partially dissolve porous resins or asphaltenes [27, 32, 38].
This study aims to investigate how pore structures of marine-continental coal and mudstone are affected by in-situ-sorptive bitumen and hydrocarbons and altered by solvent extractions through comparing pore parameters of the samples before and after solvent extraction. Sample features, including thermal maturity, maceral compositions, hydrocarbons potential and TOC, were characterized by organic petrology, Rock-Eval pyrolysis and other bulk analysis methods. Gas chromatography was used to analyze the properties of the extracts. Nanopore structures were characterized by low pressure Argon (Ar) and carbon dioxide (CO\(_2\)) adsorption. This study clarifies what the extractable compounds of transitional coal and mudstone are like, and how they affect pore structures, and gains insights into the mechanisms of solvent extraction altering pore structures.

2 Samples and methods

2.1 Samples
Taiyuan and Shanxi Formations (belonging to Carboniferous and Permian Systems) in Ordos Basin, China were deposited in a marine-continental transitional facies. The transitional facies refers to the deposits between continental and marine settings, ranging from lagoon-tidal flat and fluvial-delta environments [39]. These strata are composed of a sequence of interbedded coal, mudstone and sandstone, forming a combination of different types of unconventional natural gas reservoirs. Joint development of coalbed methane, shale gas and tight gas has been proposed to raise recovery efficiency [39, 40].

This study focuses on the coal and mudstone in Taiyuan and Shanxi Formations, which are the weak links of the joint development. Samples were collected from collieries in Lin and Xing Counties, eastern Ordos Basin, and all belonged to the Taiyuan and Shanxi Formations. The coals are taken from the fresh coalfaces, and the mudstones, from the roofs or floors of the corresponding coal seams. The study bases on four coal and four mudstone samples. As mineralogy of transitional mudstone in the region is featured by high kaolinite content [33], two tonstein (nearly 100 percent of kaolinite) samples were included in the mudstone samples to amplify the effects of kaolinite. The mineral compositions of the selected four mudstones are shown in Tab. 1. The data were obtained by X-ray
diffractometry (XRD) following Chinese Industrial Standard SY/T 5163-2010. Mineral compositional analyses of bulk shale samples and their clay fractions were performed by a D/max-2005 X-ray diffractometer. XRD patterns were recorded from 2 to 45°(2θ) at the speed of 2°(2θ) per minute and the step width of 0.02°(2θ). M-1 and M-2 are tonstein samples, dominated by kaolinite. In-situ tonstein is a good material to study the role of kaolinite in mudstone. M-3 and M-4 contain a certain amount of quartz and clay minerals, and the clay minerals include illite/smectite mixed layers and kaolinite. Each sample (both coal and mudstone) was crushed to 40-60 mesh particles, some of which were further pulverized for total organic carbon analysis, Rock-Eval pyrolysis; the rest were split into two fractions. One fraction was kept as original samples, and the other was prepared for solvent extraction.

2.2 Methods

Thermal maturity was characterized by random vitrinite reflectance (R_o) of the coals. The coal samples were prepared for microscopic analysis by incident white light, following ASTM standard D2797. R_o was examined in incident white light at magnification of 500× oil immersion. Thermal maturity of the mudstones refers to the R_o of the corresponding coal samples, since they are collected from adjacent seams. Microscopic examination of kerogen was performed to evaluate maceral compositions. Coarse kerogen particles were obtained, following Chinese National Standard GB/T 19144, and the examination was performed by a transmitted light microscope equipped with ultraviolet (UV) light, following Chinese Industrial Standard SY/T 5125. Kerogen types were further calculated based on maceral compositions.

Total organic carbon (TOC) of the mudstones was measured with a Leco CS230 Carbon/Sulfur analyzer after the powered subsamples were soaked in heated hydrochloric acid solution to remove carbonates. The procedure followed Chinese National Standard GB/T 19145-2003. Rock-Eval pyrolysis was performed on 100-200 mesh mudstones. Related parameters were recorded. During the pyrolysis the first peak (S_1, mg HC/g rock) represents hydrocarbons distilled from rock. The second peak (S_2, mg HC/g rock) represents hydrocarbons generated by pyrolytic degradation. The third peak
(S₃, mg HC/g rock) represents milligrams of CO₂ generated from a gram of rock during temperature programming up to 390 °C. Temperature of maximum pyrolysis yield (Tₘₐₓ, °C) refers to the temperature at which the maximum amount of S₂ hydrocarbons is generated. Hydrogen index (HI, mg HC/g TOC) was calculated through dividing S₂ by TOC [41-43].

Solvent extraction was performed in a Soxhlet extractor with a solvent mixture of dichloromethane (DCM) and methanol (volume ratio 9:1). The samples were refluxed for more than 96 hours until the effluent distilled solvent was colourless and transparent. The extracts were evaporated to volatilize the solvent. The saturated fractions were separated from the extracts, and were then analyzed using gas chromatography (GC), flowing Chinese Industrial Standard SY/T 6196-1996. Saturated fraction separation and GC analysis were performed in the State Key Laboratory for Heavy Oil Processing, China.

Low-pressure argon (Ar) and carbon dioxide (CO₂) adsorptions were used to determine the nanopore structure of both original and extracted subsamples by a Autosorb iQ apparatus. The outgassing procedure prior to the adsorptions was conducted with a vacuum pumping system at 110 °C for 12 hours. It has been demonstrated that Ar at 87K and N₂ at 77K have excellent agreements in adsorption behaviors in mesopores [44]. The major difference between them is 1) Ar at 87 K fills micropores at a higher relative pressure, leading to accelerated equilibration and permits the measurement of high resolution adsorption isotherms; 2) Ar does not have a quadrupole moment as N₂. Ar adsorption at 87 K has been recommended to be an alternated method of nitrogen (N₂) adsorption at 77 K [45], because the bias caused by the orientation of a N₂ molecule may cause uncertainty in the value of molecular cross-sectional area – possibly ~ 20% for some surfaces [46]. CO₂ adsorption at 273 K provides more detailed information of micropores. Ar and CO₂ adsorptions have been combined to characterize nanopore structure of shale [47]. As for Ar adsorption, Brunauer–Emmett–Teller (BET) model was used to obtain specific surface areas (Aₛ), and Barrett, Joyner and Halenda (BJH) model was used to characterize pore size distributions (PSD). As for CO₂ adsorption, a density functional theory (DFT) model was chosen to calculate micropore specific surface areas (Aₛ−μ) and micropore size distributions (PSDₜ).
3 Results

3.1 Sample features

Tab. 2 and 3 present thermal maturity and maceral compositions of the coal and mudstone samples. \(R_o \) of the coal samples ranges from 0.807 to 1.135 \%, mainly in mid- to late- oil window. In this paper, we use “lower mature” to describe the maturity of the first two samples (\(R_o \), 0.81 and 0.84 \%) and “higher mature”, the maturity of the last two samples (\(R_o \), 1.01 and 1.14 \%). For examples, the lower mature coals represent C-1 and C-2. Vitrinite is the major maceral composition of the coals, accounting for percentages of 61.63 -85.69 \%, except for C-2. Vitrinite of C-2 takes up 29.94 \%, and semivitrinite, 44.31 \%. Thermal maturity of the mudstones refers to the corresponding coal samples. As for the mudstones, their macerals are much different between each other and are sourced by both terrestrial and aquatic-derived organic matter. Vitrinite and inertinite are associated with terrestrial organic matter while most sapropelinite and some liptinite are sourced from aquatic-derived organic matter. Total amount of vitrinite, inertinite and liptinite decreases with increasing distance to continent [48]. Maceral compositions were used for kerogen typing. Kerogen’s type index (TI) varies from 76.5 to 94.5, and the kerogen types of the four mudstones can be categorized as III, I, III and II, respectively. Tab. 4 presents TOC and pyrolysis parameters of the mudstones. The TOC contents vary from 2.27 to 8.43 wt. \% and M-2 accounts for the maximum value. \(T_{\text{max}} \) values range from 446.8 to 462.7 °C, and consist with the their \(R_o \). \(S_2 \) values change from 0.82 to 9.35 mg HC/g rock and HI values range from 16.87 to 110.91 mg HC/ g rock, revealing different petroleum potentials. Three mudstones fall into the Type II region of the HI vs \(T_{\text{max}} \) plot, and one mudstone (M-2), Type III region (Fig. 1). The results of microscopic examination on kerogen and Rock-Eval pyrolysis do not completely agree with each other, due to their inadequate resolution [49], but both of them indicates the diversity of organic input.

3.3 Gas chromatography

The coals produce more extracts than the mudstones (0.25-4.02 g HC/ g rock for the coals and 0.040-
0.143 g HC/g rock for the mudstones) (Tab. 5). The extract production of the coals is strongly affected by thermal maturity, while that of the mudstone increases with S2 values (Fig. 2a and b). Gas chromatography provides information of normal alkanes (n-alkanes). n-alkane distributions of either the coals or the mudstones are diversiform (Fig. 3 and 4). n-alkanes can be divided into short-, mid- and long-chain (n-C15-20, n-C21-25 and n-C26+, respectively) [50]. The coals can be categorized to short-chain-n-alkane-dominated (s-dominated) and long-chain-n-alkane-dominated (l-dominated) coals. As for the coals, C-1, C-2 and C-3 are dominated by short-chain n-alkanes, with maximum peaks at n-C19, n-C18 and n-C17 respectively. Their \(\sum n-C_{21} / \sum n-C_{22+} \) values range from 0.74 to 1.58. By contrast, C-4 mainly contains mid- and long-chain n-alkanes, with a maximum peak at n-C25 and a low \(\sum n-C_{21} / \sum n-C_{22+} \) value of 0.44. Pr/Ph is in the range of 0.95-2.48.

As for the mudstones, n-alkanes of M-1 and M-3 reach peaks at long-chain n-alkanes, while M-2 and M-3, short-chain n-alkanes. n-alkane distributions of M-1 and M-2 are unimodal, which indicates a single terrestrial organic input for l-dominated M-1 and a single marine organic input for l-dominated M-2. M-1 has the lowest \(\sum n-C_{21} / \sum n-C_{22+} \), 0.11; M-2 has the largest \(\sum n-C_{21} / \sum n-C_{22+} \), 2.36. n-alkane distributions of M-3 and M-4 are bimodal, with \(\sum n-C_{21} / \sum n-C_{22+} \) of 0.37 and 0.90 respectively, which indicates mixed organic input. M-3 is sourced by a lower percentage of marine organic input than M-4. The CPI of the coal samples (1.11-1.19) is larger than that of the mudstones (1.00-1.10), and the Pr/Ph of the coal samples (0.95-2.48, average 1.80) is also larger than that of the mudstones (0.76-1.35, average 1.11).

3.3 Low-pressure Ar adsorption

Tab. 6 presents the specific surface areas (\(A_s \) from Ar adsorption and \(A_{s-\mu} \) from CO2 adsorption) of the coal and mudstone samples. Fig. 5 and 6 show the PSD curves of the coals and mudstones, respectively. \(A_s \) of the original coals ranges from 0.42-1.97 m²/g, average 0.88 m²/g. Solvent extraction causes remarkable changes of pore structure in coals [26]. \(A_s \) of every coal sample increased after suffering solvent extraction, so did the PSD curves, and the changes of the lower mature coals are more remarkable (Fig. 5). Herein, we use “minor pores” and “larger pores” to
describe the pores in the left and right part of PSD curves, respectively. Minor pores of C-1 and C-4 increased much (Fig. 5a and d), and both minor and larger pores of C-2 increased after extraction (Fig. 5b). PSD curves of C-3 changed little (Fig. 5c).

A_s of the original mudstones is in the range of 1.64-10.93 m2/g, average 6.84 m2/g, much larger than that of the original coals, and does not change significantly after solvent extractions (Tab. 6). A_s and PSD curves of three mudstones (M-1, M-3 and M-4) dropped after solvent extraction (Tab. 6 and Fig. 6). Only M-2 saw a rise of A_s and PSD curve (Fig. 6b).

3.4 CO$_2$ adsorption

$A_{s-\mu}$ of the original coals is in the range of 57.15-89.04 m2/g, much more than their A_s from Ar adsorption (0.42-1.97 m2/g). Activated diffusion and kinetic restriction of nitrogen molecules at 77 K (or argon molecules at 87K) lead to low BET-A_s of coal [51, 52]. The $A_{s-\mu}$ decreases with thermal maturity, which agrees with previous conclusion that micropore volume of dry coal samples shows a minimum in the range of 1.2-1.4 $\% R_o$ [51]. $A_{s-\mu}$ of the coals generally increases after solvent extraction, especially for the lower mature coals (Fig. 7a). $A_{s-\mu}$ of the mudstones ranges from 6.73 to 12.09 m2/g. Comparing the $A_{s-\mu}$ of the coal and mudstone samples, it indicates that organic matter develops more micropores that minerals. $A_{s-\mu}$ of the two lower mature mudstones increased after solvent extraction, while the other two decreased (Fig. 7b). Micropore size distribution (PSD$_{\mu}$) of the coals and mudstones are shown in Fig. 8 and Fig. 9. The PSD$_{\mu}$ curves of the coals generally have two peaks at ~ 0.6 nm and 0.8 nm, but those of the mudstones show an additional peak at 0.35 nm, which agrees with previous studies [53, 54]. The additional peak may be due to the clay minerals. After suffering solvent extraction, all the coal samples saw an increase of pores <0.6 nm, and the mudstone samples, an decrease of pores < 0.4 nm.

4 Discussion

4.1 Organic input and properties of extractable bitumen

Extract production of the coals decreases with thermal maturity, since asphaltenes and resins crack
soon after their formation or later [55]. Extract production of the mudstones is mainly controlled by S_2 (Fig 2b), rather than R_o. The inconformity of oil windows occurs between different types of kerogen, which weakens the effects of R_o to extract production. Oil window of type III kerogen (0.85-1.05% R_o to 1.5-2.0% R_o) is much later than conventional oil window (0.5-0.5% R_o to 1.3-1.35 R_o) [56-58]. Thus, the mixture of different types of organic matter does not has a regular oil-generation peak, and the extract production of mudstones shows no relationship with thermal maturity.

The Taiyuan and Shanxi Formations, a sequence of interbedded coal, mudstone and sandstone, deposited in a transitional environment, with alternating regression and transgression [39, 59]. Sedimentary environment affect not only clastic granularity, but also organic input and its preservation condition. Maceral analysis got the results that the coals are largely composed with vitrinite (or semivitrinite for C-2) (Tab. 2). However, the n-alkane distribution patterns of three coals indicates strong influence of marine organic input. The disagreement is because microscopic analysis by incident light is not appropriate for examination of aquatic-derived organic matters [60]. n-alkane distribution patterns provide the information of organic precursors. Short-chain n-alkanes are considered to originate mostly from algae and microorganism, and mid- chain n-alkanes, aquatic plants and some moss species; long-chain n-alkanes are typical components of the epicuticular waxes of vascular plants [61-63]. n-alkanes can be altered by thermal and bacterial degradation [64]. Biodegradation is featured by losing n-alkanes and even acyclic isoprenoids [64], which does not occur in our samples. Thermal degradation generally cracks higher-molecular-weight n-alkanes to lighter products [64], while our higher mature samples (such as C-4 and M-3) have a high proportion of long-chain n-alkanes. Thus, the n-alkane distribution patterns of the samples were not remarkably altered by thermal or bacterial degradation and can reveal their precursors.

According to the n-alkane distribution patterns, the coals can be grouped into s-dominated and l-dominated coals. The first three coals (C-1, C-2 and C-3) are dominated by short-chain n-alkanes, which indicate the existence of marine organic matter. Pr/Ph ratio is an commonly used indicator of redox conditions and source of organic matter [65]. Coal samples, predominantly sourced from terrestrial plants, are expected to have Pr/Ph ratios > 3.0 (oxidizing conditions), while low values of
Pr/Pr ratio (<0.6) suggest anoxic conditions, and the ratios between 1.0-3.0 indicate intermediate conditions (subtoxic conditions) [64, 65]. Pr/Ph ratios of the first three coals are lower than the regressive line of the referenced coal samples [66, 67] (Fig. 10), which also supports the input of marine organic matter. Only C-4 has dominated by long-chain *n*-alkanes (Fig. 3d), supporting mainly terrestrial organic input. However, the *s*-dominated *n*-alkanes only indicate the existence of marine organic input, and do not evidence the three coals contain more marine organic input than terrestrial organic input. It is because conversion rates from kerogen to hydrocarbons differ in kerogen types (15-30 wt. % of terrestrial organic matter, 60 wt. % of marine organic matter with an HI of 600 mg HC/g TOC, 80 wt. % lacustrine organic matter with an HI of 800 mg HC/g TOC) [68]. Additionally, different preferential adsorption by kerogen of different compounds (polar compounds > aromatic hydrocarbons > saturated hydrocarbons) leads to differential expulsion or retention of selective compounds of bitumen and hydrocarbons [69-71].

Statistic data of kerogen’s microscopic examination and the HI vs T*max* plot support different kerogen types and a transitional sedimentary environment (Tab. 3 and Fig. 1). The diversity of *n*-alkane distributions of the mudstones is stronger than that of the coals. ∑*n*-C*21*/∑*n*-C*22+ of the mudstones ranges from 0.11 to 2.36, and that of the coals, from 0.44 to 1.58. As for the mudstones, there is a relationship between HI and TI (Fig. 11a) and between ∑*n*-C*21*/∑*n*-C*22+ and TI (Fig. 11b). It indicates that both HI and ∑*n*-C*21*/∑*n*-C*22+ reveal the quality of organic matter in the mudstones. The *n*-alkane distribution patterns of the mudstones support aquatic-derived, terrigenous organic matter, or their mixture contribution. With ∑*n*-C*21*/∑*n*-C*22+ increasing, the ratio of marine to terrestrial organic matter increases.

4.2 Pore changes by solvent extraction based on Ar adsorption

4.2.1 The effects on the coals

The coals contain much more extractable compounds than the mudstones. Removing the abundant extractable compounds causes great increases of specific surface areas and pore spaces. There is an uplift of PSD curves of every coal sample in either minor or larger pores, or entire ranges (Fig. 5).
Extract production determines the increments of pore volume, which partially affects A_s. Besides pore volume, A_s is also related to PSD, as small pores contribute more to A_s. Changes of PSD are controlled by the texture and location of extracts, which are affected by organic precursors and thermal maturity. Generally, there are watersheds between minor and larger pores on PSD curves around 10 nm. It has been reported that coal-bearing shale is rich in pores <10 nm [72]. The volumes of pores <10 nm ($V_{<10 \text{ nm}}$) and within 10-50 nm ($V_{10-50 \text{ nm}}$), and their change rates after solvent extraction were calculated (Tab. 7). The s-dominated coals show an decreasing change rates of $V_{<10\text{nm}}$ with R_o increasing (Fig. 12a); the $V_{10-50 \text{ nm}}$ of the s-dominated coals is larger than the l-dominated coal (Fig. 12b). The change rates indicate the degree of pore filling by hydrocarbons and bitumen. The decreasing change rates of $V_{<10\text{nm}}$ of the s-dominated coals are caused by thermal maturation. At early stages of maturation, kerogen is decomposed to gas and bitumen. Some bitumen components including asphaltenes and resins also crack at the same time as or soon after their formation from kerogen [73]. Nanoporosity in organic matter begins to develop at $R_o>0.6$ to 0.9 % [74-76]. Removing the extractable bitumen and oil exposes porous kerogen and solid bitumen. With maturation, oil (mainly C$_6$+ components) secondarily cracked to gas and carbon-rich residue such as solid bitumen is generated [55, 77, 78], and the bitumen contents decrease. Most residual hydrocarbons and some movable bitumen have been driven out to larger pores or fractures. And thus, removing the extractable parts of the high mature mudstones has a minimal effect on minor pores. Conclusively, marine organic input strongly affects the pore structure of the coals. The pores of lower mature coal are strongly blocked by bitumen and hydrocarbons, and thermal maturation weakens the blockage, especially for minor pores.

As coal asphaltenes are much smaller than petroleum asphaltenes [79, 80], C-4, which was mainly sourced by terrestrial organic input, has smaller asphaltene molecules. Thus, removing extractable compounds of C-4 mainly increases the minor pores, while all other coal samples see an increase of larger pores (Fig. 12b).
4.2.2 The effects on the mudstones

The change patterns of pore structures of the mudstones are totally different from those of the coals. A_s and PSD curves of three mudstones dropped after solvent extraction (Tab. 6 and Fig. 6), so did the $V_{<10\text{nm}}$ and $V_{10-50\text{ nm}}$ (Fig 11). Previous studies generally found PSD curves of mudstone rise after solvent extraction, and the samples in their studies are dominantly lacustrine shale with moderate or relatively high TOC contents, and have high extract production [30, 33, 81]. Decreases of mesopore volumes or PSD curves of a few marine shales after solvent extraction have been reported [27, 32, 38]. While the PSD decreasing becomes more common for our samples. Only the M-2 shows an uplift of the PSD curve. The causes of the PSD changes include, on one hand, the extract productions of our samples are much lower than either lacustrine or marine shales, which means less pore space can be released by solvent extraction. Increments of pores caused by solvent extraction are remarkable for the high-extract samples, such as M-2. On the other hand, transitional mudstones contain rich kaolinite and other clay minerals [36], which swells by adsorbing solvent, causing the shrinkage of pores. Kaolinite contents of the mudstones range from 11.6 to 93.1 wt. %. PSD curves decrease when the negative effect of clay swelling is more remarkable than the positive effect of emptying extractable compounds in pores. M-1, M-3 and M-4 are in this case. Solvent extraction inducing swelling of montmorillonite and illite/smectite has been observed [38, 82]. The decrease of PSD of M-1, which is dominated by kaolinite (93.1 wt. %), demonstrates that kaolinite swells after interacting with solvent, and the effect can counteract the released pores in some cases. Interlayer surface of kaolinite can be chemically modified with methanol at room temperature [83]. Methoxy groups expand the interlayer space of kaolinite (the basal spacing of kaolinite and methanol-treated kaolinite are 0.72 and 0.86 nm, respectively) [83]. Hydrogen bonding solvents (such as methanol) swell clays more than polar aprotic and non-polar solvents [38], which means methanol causes stronger swelling of clay than original hydrocarbons. However, the positive effect of realizing pore spaces dominates over the negative effect of absorbing solvent if TOC is large enough, such as M2, with a TOC value of 8.43%.
Solvent swelling kerogen was also demonstrated [84, 85]. However, the negative effect of kerogen swelling is not as remarkable as the positive effect of emptying pores, since the pores of the coals and M-2 (samples with high TOC contents) increased after solvent extraction. Additionally, solvent extraction may also dissolve and extract porous resins or asphaltenes [38]. Adsorbate (Ar or CO$_2$) can dissolve in bitumen, which results in an overestimate of pore volumes of original samples [24, 27].

4.3 Micropore changes by solvent extraction based on CO$_2$ adsorption

Solvent extraction significantly increases the $A_{s-\mu}$ of the lower mature coals, but has very little effects on the higher mature coals. With maturation, extractable bitumen partly transforms to solid bitumen (pyrobitumen). Solubility of solid bitumen in solvents decreases with thermal maturity [86]. Thus, removing the extractable parts of high mature samples have a minimal effect on pore structures. From Fig. 8, all the coal samples see an increase of pores 0.3-0.6 nm, which contributes a lot to the increase of $A_{s-\mu}$. Only C-3 shows an decrease of $A_{s-\mu}$, due to the large decrease of pores within 0.6-0.9 nm. Preferential adsorption on the pores within 0.4-0.5 nm has been demonstrated by studying sorption of alkanes on zeolite. The heat of sorption as a function of mean pore diameter exhibits a maximum between 0.4 and 0.5 nm [87, 88]. At the pore sizes smaller than 0.5 nm repulsion forces start to be important [89]. Thus, solvent extractions mainly increase the pores 0.3-0.6 nm.

The effects of solvent extraction on mudstone’s pore structures also depend on the maturity. $A_{s-\mu}$ of the two lower mature mudstones increased after solvent extraction, while that of the two higher mature mudstones decreased (Fig. 7b). Thermal maturation changes the compositions and textures of bitumen, increasing the aromaticity and decreasing the H/C ratio of bitumen [90, 91]. Comparing with the coals, PSD$_{\mu}$ of the mudstones show an additional peak at 0.35 nm, which likely come from the clay minerals. Unlike the coal samples, the PSD$_{\mu}$ of the mudstones only saw decreases of the peak at ~0.35 nm (Fig. 9). Similar results (pores ~0.35 nm decreased after solvent extraction) were obtained by [81]. Solvent displacing residual water in micropores causes evaporative drying, which causes a reduction of porosity [92], or shrinks smaller pores (less than 0.6 nm) and enlarges larger pores [38, 93]. However, the evaporative drying is weak in porous organic matter. It is because that
kerogen is more likely hydrophobic, while inorganic part in mudstone is hydrophilic due to clay minerals [94, 95]. Gu et al. [96] indicates that OM porosity is water-accessible only for the pores > 20 nm. Thus, evaporative drying is weak in organic matter but strong in inorganic parts of mudstones and causes reductions of clay micropores (~0.35 nm).

5 Conclusions

The flowing conclusions are obtained based on our limited samples and restricted to mid- to late-oil window marine-continental coal and mudstone.

(1) Thermal maturation decreases the extract amount of coal but do not affects mudstone significantly. n-alkane distribution indicates that the coals, except for C-4, are strongly influenced by marine organic input. Microscopic examination, Rock-Eval pyrolysis and n-alkane distribution patterns support the mudstones are soured by either marine or terrestrial organic input or their mixture.

(2) As for the short-chain-n-alkane-dominated coals, the effect of in-situ sorptive compounds occupying or blocking pores becomes weak with thermal maturation, due to the degradation of bitumen. The extractable compounds mainly affect the minor pores in long-chain- n-alkane-dominated C-4, since the molecules of coal asphaltene are much smaller than those of petroleum asphaltene.

(3) Differing from marine or lacustrine mudstone, nanopores of transitional mudstone generally decrease after suffering solvent extraction. Our mudstone samples show the kaolinite swelling caused by interacting with solvent has a strongly negative effect on pore sizes. As for the samples with high clay contents and low or moderate TOC contents, the effect of clay swelling can counteract or exceed the effect of releasing pore spaces. The sample with high TOC and high extract production is dominated by releasing occupied or blocked pores.

(4) Solvent extraction significantly increased the $A_{s-\mu}$ of the lower mature coals, but had little effect on the higher mature coals. Every coal sample saw an increase of the pores within 0.3-0.6 nm, since the heat of sorption of alkanes reaches the peak in the pores within 0.4-0.5 nm.

(5) Solvent extraction increased the $A_{s-\mu}$ of the lower mature mudstones but decreased the $A_{s-\mu}$ of the
higher mature mudstones. The micropores of the mudstones decreased at ~ 0.35 nm, which may due to the evaporative drying caused by solvent displacing residual water in micropores. Evaporative drying is weak in organic matter, but strong in clay minerals, since kerogen is more hydrophobic but minerals are hydrophilic.

(6) Due to the strong interactions between solvent and clay minerals, solvent extraction can not be used to obtain the “bitumen-free porosity” of transitional and other clay-rich mudstones.

Acknowledgements:

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 41530315, 41372213, 41572116), the National Science and Technology Major Project of China (Grant Nos. 2016ZX05066003, 2016ZX05066006), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05030100) and China Scholarship Council and British Council (Grant No. 201703780094). The authors also gratefully acknowledge Prof. Andrew C. Aplin from Durham University for his helpful comments on both structure and content of the paper.

References:

Dill HG. Kaolin: Soil, rock and ore From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews 2016;161:16-129.

Lasswell PM. Shale routine & special core analysis. Weatherford Laboratories; 2011.

Boucsein B, Stein R. Black shale formation in the late Paleocene/early Eocene Arctic Ocean and paleoenvironmental conditions: New results from a detailed organic petrological study.

Table 1 Mineral composition of the mudstone samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Quartz (wt. %)</th>
<th>Feldspar (wt. %)</th>
<th>Pyrite (wt. %)</th>
<th>Smectite (wt. %)</th>
<th>Illite-Smectite mixed layer (wt. %)</th>
<th>Illite (wt. %)</th>
<th>Kaolinite (wt. %)</th>
<th>Chlorite (wt. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>/</td>
<td>/</td>
<td>5.1</td>
<td>/</td>
<td>/</td>
<td>0.9</td>
<td>93.1</td>
<td>0.9</td>
</tr>
<tr>
<td>M-2</td>
<td>1.2</td>
<td>/</td>
<td>0.5</td>
<td>2.0</td>
<td>/</td>
<td>3.9</td>
<td>91.4</td>
<td>1.0</td>
</tr>
<tr>
<td>M-3</td>
<td>46.1</td>
<td>6.0</td>
<td>/</td>
<td>/</td>
<td>26.3</td>
<td>6.2</td>
<td>11.6</td>
<td>3.8</td>
</tr>
<tr>
<td>M-4</td>
<td>34.6</td>
<td>1.0</td>
<td>/</td>
<td>/</td>
<td>14.2</td>
<td>3.2</td>
<td>44.4</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table 2 Vitrinite reflectance and maceral composition of the coal samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R0 (%)</th>
<th>Maceral composition (v/v %)</th>
<th>(a)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(c)</th>
<th>(d)</th>
<th>Kerogen Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vittrinite</td>
<td>Semivitrinite</td>
<td>Fusinite</td>
<td>Semifusinite</td>
<td>Liptinite</td>
<td>Clay</td>
<td>Carbonatite</td>
</tr>
<tr>
<td>C-1</td>
<td>0.81</td>
<td>61.63</td>
<td>3.58</td>
<td>21.07</td>
<td>4.38</td>
<td>2.98</td>
<td>2.78</td>
<td>3.58</td>
</tr>
<tr>
<td>C-2</td>
<td>0.84</td>
<td>29.94</td>
<td>44.31</td>
<td>0.20</td>
<td>10.58</td>
<td>2.40</td>
<td>10.18</td>
<td>2.40</td>
</tr>
<tr>
<td>C-3</td>
<td>1.01</td>
<td>85.69</td>
<td>0.19</td>
<td>1.74</td>
<td>1.74</td>
<td>3.48</td>
<td>7.16</td>
<td>/</td>
</tr>
<tr>
<td>C-4</td>
<td>1.14</td>
<td>80.78</td>
<td>7.06</td>
<td>2.55</td>
<td>6.08</td>
<td>1.18</td>
<td>1.77</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Table 3 Maceral compositions of the mudstone samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Maceral composition (v/v %)</th>
<th>(a)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(c)</th>
<th>(d)</th>
<th>Kerogen Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sapropelinite</td>
<td>Resinite</td>
<td>Liptinite without Resinite</td>
<td>Vitrinite</td>
<td>Inertinite</td>
<td>TI</td>
<td>Kerogen Types</td>
</tr>
<tr>
<td>M-1</td>
<td>/</td>
<td>/</td>
<td>4</td>
<td>70</td>
<td>26</td>
<td>-76.5</td>
<td>III</td>
</tr>
<tr>
<td>M-2</td>
<td>89</td>
<td>/</td>
<td>11</td>
<td>/</td>
<td>/</td>
<td>94.5</td>
<td>I</td>
</tr>
<tr>
<td>M-3</td>
<td>2</td>
<td>/</td>
<td>10</td>
<td>74</td>
<td>14</td>
<td>-62.5</td>
<td>III</td>
</tr>
<tr>
<td>M-4</td>
<td>44</td>
<td>/</td>
<td>48</td>
<td>6</td>
<td>2</td>
<td>61.5</td>
<td>(II_1)</td>
</tr>
</tbody>
</table>

\(^a\) Kerogen type index (TI) is calculated by the following equation, TI=100\(a+80b_1+50b_2+(75)c+(100)d\), where \(a\), \(b_1\), \(b_2\), \(c\) and \(d\) are the percentage of sapropelinite, resinite, liptinite free of resinite, vitrinite and inertinite, respectively, %.

\(^b\) Kerogen types is determined by TI. The ranges of TI values of type I and \(II_1 \), type \(II_1 \) and \(II_2 \), and type \(II_2 \) and III, are >80, 80-40, 40-0 and <0, respectively.

Table 4 TOC and Rock-Eval pyrolysis parameters of the mudstone samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>TOC (wt. %)</th>
<th>(T_{\text{max}}) (°C)</th>
<th>(S_1) (mg HC/g rock)</th>
<th>(S_2) (mg HC/g rock)</th>
<th>HI (mg HC/g TOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>4.86</td>
<td>446.8</td>
<td>0.22</td>
<td>0.82</td>
<td>16.87</td>
</tr>
<tr>
<td>M-2</td>
<td>8.43</td>
<td>447.7</td>
<td>0.48</td>
<td>9.35</td>
<td>110.91</td>
</tr>
<tr>
<td>M-3</td>
<td>2.27</td>
<td>461.4</td>
<td>0.36</td>
<td>1.58</td>
<td>69.60</td>
</tr>
<tr>
<td>M-4</td>
<td>4.7</td>
<td>462.7</td>
<td>0.53</td>
<td>4.73</td>
<td>100.64</td>
</tr>
</tbody>
</table>
Table 5: Extract production and organic geochemical parameters from gas chromatography

<table>
<thead>
<tr>
<th>Samples</th>
<th>Extract production (g HC/g rock)</th>
<th>Max-peak</th>
<th>C<sub>21</sub>/C<sub>22</sub></th>
<th>n-C<sub>17</sub>/n-C<sub>31</sub></th>
<th>Pr/Ph</th>
<th>Pr/n-C<sub>17</sub></th>
<th>Ph/n-C<sub>18</sub></th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>4.02</td>
<td>n-C<sub>19</sub></td>
<td>0.74</td>
<td>2.77</td>
<td>2.12</td>
<td>0.92</td>
<td>0.45</td>
<td>1.11</td>
</tr>
<tr>
<td>C-2</td>
<td>2.70</td>
<td>n-C<sub>18</sub></td>
<td>1.58</td>
<td>7.34</td>
<td>2.48</td>
<td>0.29</td>
<td>0.11</td>
<td>1.13</td>
</tr>
<tr>
<td>C-3</td>
<td>0.36</td>
<td>n-C<sub>17</sub></td>
<td>1.11</td>
<td>5.70</td>
<td>1.63</td>
<td>0.63</td>
<td>0.39</td>
<td>1.17</td>
</tr>
<tr>
<td>C-4</td>
<td>0.25</td>
<td>n-C<sub>25</sub></td>
<td>0.44</td>
<td>1.55</td>
<td>0.95</td>
<td>0.17</td>
<td>0.15</td>
<td>1.19</td>
</tr>
<tr>
<td>M-1</td>
<td>0.05</td>
<td>n-C<sub>27</sub></td>
<td>0.11</td>
<td>0.23</td>
<td>0.76</td>
<td>0.88</td>
<td>0.82</td>
<td>1.07</td>
</tr>
<tr>
<td>M-2</td>
<td>0.14</td>
<td>n-C<sub>16</sub></td>
<td>2.36</td>
<td>9.45</td>
<td>1.35</td>
<td>0.44</td>
<td>0.35</td>
<td>1.10</td>
</tr>
<tr>
<td>M-3</td>
<td>0.04</td>
<td>n-C<sub>26</sub></td>
<td>0.37</td>
<td>1.12</td>
<td>1.22</td>
<td>0.65</td>
<td>0.44</td>
<td>1.05</td>
</tr>
<tr>
<td>M-4</td>
<td>0.07</td>
<td>n-C<sub>18</sub></td>
<td>0.90</td>
<td>2.66</td>
<td>1.1</td>
<td>0.55</td>
<td>0.47</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 6: Parameters of pore structure before and after solvent extraction. \(A_s \) represents specific surface area obtained by low-pressure Ar adsorption and \(A_{s-\mu} \) represents micropore specific surface area obtained by low pressure CO\(_2\) adsorption.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(A_s) (m(^2)/g)</th>
<th>(A_{s-\mu}) (m(^2)/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original</td>
<td>Extracted</td>
</tr>
<tr>
<td>C-1</td>
<td>0.42</td>
<td>1.41</td>
</tr>
<tr>
<td>C-2</td>
<td>1.97</td>
<td>3.5</td>
</tr>
<tr>
<td>C-3</td>
<td>0.77</td>
<td>0.82</td>
</tr>
<tr>
<td>C-4</td>
<td>0.34</td>
<td>0.52</td>
</tr>
<tr>
<td>M-1</td>
<td>1.64</td>
<td>1.18</td>
</tr>
<tr>
<td>M-2</td>
<td>7.61</td>
<td>8.56</td>
</tr>
<tr>
<td>M-3</td>
<td>7.16</td>
<td>5.96</td>
</tr>
<tr>
<td>M-4</td>
<td>10.93</td>
<td>7.28</td>
</tr>
</tbody>
</table>

Table 7: Changes of the minor and larger pores caused by solvent extraction. The results were obtained from low-pressure Ar adsorption.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pores<10nm (10(^{-3})m(^2)/g)</th>
<th>Change Rate (%)</th>
<th>Pores between 10-50nm (10(^{-3})m(^2)/g)</th>
<th>Change Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original</td>
<td>Extracted</td>
<td>Change Rate</td>
<td>Original</td>
</tr>
<tr>
<td>C-1</td>
<td>0.40</td>
<td>1.36</td>
<td>243</td>
<td>1.75</td>
</tr>
<tr>
<td>C-2</td>
<td>1.88</td>
<td>2.74</td>
<td>46</td>
<td>7.72</td>
</tr>
<tr>
<td>C-3</td>
<td>0.72</td>
<td>0.75</td>
<td>4</td>
<td>1.33</td>
</tr>
<tr>
<td>C-4</td>
<td>0.32</td>
<td>0.44</td>
<td>36</td>
<td>0.87</td>
</tr>
<tr>
<td>M-1</td>
<td>1.42</td>
<td>0.94</td>
<td>-34</td>
<td>6.64</td>
</tr>
<tr>
<td>M-2</td>
<td>7.20</td>
<td>7.89</td>
<td>10</td>
<td>11.77</td>
</tr>
<tr>
<td>M-3</td>
<td>5.54</td>
<td>5.41</td>
<td>-2</td>
<td>17.47</td>
</tr>
<tr>
<td>M-4</td>
<td>8.45</td>
<td>6.86</td>
<td>-19</td>
<td>17.83</td>
</tr>
</tbody>
</table>
Figure 1 HI vs T_{max} plot of the mudstone samples.
Figure 2 (a) Extract production of the coals decreases with vitrinite reflectance; b) Extract production of the mudstones increases with S_2 values.
Figure 3 *n*-alkane distribution of the coal samples. Black arrows are primary peaks of each sample.
Figure 4 n-alkane distribution of shale samples (Black arrows are primary peaks, and grey arrows are secondary peaks)
Figure 5 Pore size distribution curves (Ar adsorptions) of the coal samples. Black symbols and lines represent the original coals, and red symbols and lines, the extracted coals. The arrows indicate the increase of PSD curves after extraction. [print in colour]
Figure 6 Pore size distribution curves (Ar adsorptions) of the mudstone samples. Black symbols and lines represent the original mudstones, and red symbols and lines, the extracted mudstones. The blue and green arrows indicate the increase and decline of PSD curves after extraction, respectively. [print in colour]
Figure 7 Specific surface areas of the a) coal and b) mudstone samples. The black bars represent the original samples and the white bars represent the extracted samples.
Figure 8 Micropore size distribution curves (CO$_2$ adsorption) of the coal samples. Black symbols and lines represent the original coals, and red symbols and lines, the extracted coals. The green arrows mark the increase of pores $<$0.6 nm. [print in colour]
Figure 9 Micropore size distribution curves (CO₂ adsorption) of the mudstone samples. Black symbols and lines represent the original mudstones, and red symbols and lines, the extracted mudstones. The blue arrows mark the decrease of pores ~ 0.4 nm. [print in colour]
Figure 10 Plot of Pr/Ph vs R_o of the coal samples and some referenced data. [print in colour]
Figure 11 Relationships between (a) HI values and kerogen’s Type Index, (b) $\Sigma n-C_{21}/\Sigma n-C_{22}$ values and kerogen’s Type Index.
Figure 12 Change rates of (a) $V_{<10 \text{ nm}}$ and (b) $V_{10-50 \text{ nm}}$ of the coals (black bars) and the mudstones (gray bars).