Thallium isotopes reveal protracted anoxia associated with volcanism, carbon burial, and mass extinction during the Toarcian (Early Jurassic)

Theodore R. Them IIa1, Benjamin C. Gillb, Andrew H. Caruthersc, Angela M. Gerhardtb,d, Darren R. Gröckee, Timothy W. Lyonsf, Selva M. Marroquínb, Sune G. Nielseng, João P. Trabucho Alexandre, and Jeremy D. Owensa

aDepartment of Earth, Ocean and Atmospheric Science \& National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
bDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
cDepartment of Geosciences, Western Michigan University, Kalamazoo, Michigan 49006, USA
dEnervest, Ltd, Houston, Texas 77002, USA
eDepartment of Earth Sciences, Durham University, Durham, DH1 3LE, UK
fDepartment of Earth Sciences, University of California, Riverside, California 92521 USA
gDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
hDepartment of Earth Sciences, Universiteit Utrecht, P. O. Box 80115 3508 TC Utrecht, The Netherlands

1Corresponding author: tthem@fsu.edu
For this study, we generated thallium (Tl) isotope records from two anoxic basins to track the earliest changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event (T-OAE) of the Early Jurassic (~183 Ma). The T-OAE, like other Mesozoic OAEs, has been interpreted as an expansion of marine oxygen depletion based on indirect methods such as organic-rich facies, carbon isotope excursions, and biological turnover. Our Tl isotope data, however, reveal explicit evidence for earlier global marine deoxygenation of ocean water, some 600 ka before the classically defined T-OAE. This antecedent deoxygenation occurs at the Pliensbachian/Toarcian boundary and is coeval with the onset of initial large igneous province (LIP) volcanism and the initiation of a marine mass extinction. Thallium isotopes are also perturbed during the T-OAE interval, as defined by carbon isotopes, reflecting a second deoxygenation event that coincides with the acme of elevated marine mass extinctions and the main phase of LIP volcanism. This suggests that the duration of widespread anoxic bottom waters was at least one million years in duration and spanned early to middle Toarcian time. Thus, the Tl data reveal a more nuanced record of marine oxygen depletion and its links to biological change during a period of climatic warming in Earth’s past and highlights the role of oxygen depletion on past biological evolution.

Keywords: Toarcian Oceanic Anoxic Event; Early Jurassic; Thallium isotopes; carbon isotope excursion; large igneous province; mass extinction
Significance Statement

Declining oxygen contents in today’s oceans highlight the need to better understand ancient, natural marine deoxygenation and associated extinctions. In the Early Jurassic, the Toarcian Oceanic Anoxic Event (T-OAE; ~183 Ma) is associated with significant perturbations to the Earth system, historically defined by carbon isotopes. We reconstructed global oceanic (de)oxygenation using thallium isotopes from two ocean basins that suggest a stepwise decline of oxygen that initiated before and extended well after the classically defined T-OAE interval. This initial deoxygenation occurs with the start of massive volcanism and marine extinctions while a later shift corresponds to the traditional T-OAE. This emphasizes the need for more nuanced records of ancient environmental and biogeochemical feedbacks that lead to and maintain widespread marine anoxia.

Introduction

The amount of oxygen dissolved in the modern ocean is decreasing (1, 2), due in part to the increasing concentration of greenhouse gases in the atmosphere. Similar scenarios have likely occurred throughout geologic history. For example, during transient intervals in the Mesozoic—known as oceanic anoxic events (or OAEs)—substantial increases in atmospheric greenhouse gases are linked to the volcanic emissions of large igneous provinces (LIPs); these changes are hypothesized as the primary driver of OAEs (3–5). Understanding the mechanisms underlying intervals of marine deoxygenation in Earth history, such as OAEs, is essential because they are intimately linked with ecological shifts and specifically marine mass extinctions (6). Additionally, they provide us with an analog for possible future changes in the long-term oxygen inventory of
the ocean of our planet (7, 8).

The concept of an OAE was proposed by ref. 9 to explain the multiple ocean basin occurrences of coeval organic-matter-rich sediments, or black shales, deposited at a wide range of water depths on the middle Cretaceous ocean floor. OAEs were defined as brief (<1 Ma) episodes of expansion and intensification of the oxygen minimum layer in the ocean. This expanding layer encroached on the seafloor of seamounts, submarine plateaus, and continental margins and resulted in enhanced burial of organic matter in widespread black shales. The broad temporal association of these black shales with positive excursions in the marine carbon isotope record was subsequently documented (10). These excursions have been interpreted to reflect the elevated burial of 13C-depleted organic carbon during the OAE (e.g., 4, 5, 10–16). The concept of an OAE was later applied to a positive excursion in the carbon isotope record of Tethyan Lower Jurassic limestones during what is now known as the Toarcian OAE (15).

Subsequent studies of the Toarcian OAE identified an abrupt, large magnitude, negative carbon isotope excursion (CIE) at ca. 183.1 Ma that interrupts a broader positive CIE noted by ref. 15. Generally, this negative CIE appears to define the onset of major environmental disruption, the onset of organic-rich deposition, and the main pulse of mass extinction (5, 17–19) (Fig. 1). A carbon isotope compilation of published work has also shown that the broader early Toarcian positive CIE actually begins at the Pliensbachian/Toarcian boundary (Fig. 1, SI Fig. 3) (5, 20, 21). However, this broader positive CIE precedes the onset of organic-rich deposition that defines the start of the T-OAE at many locations (5, 16, and many others) (Fig. 1, SI Fig. 3, SI Text) (Fig. 1), thus it has not been generally considered part of the T-OAE. This interval is also intriguing because it corresponds to the beginning of a mass extinction that later reaches its climax during the T-OAE (19).
Although positive CIEs could represent the effects of large-scale oxygen depletion in seawater, other environmental variables can contribute to the carbon isotope record (22, 23), and there is no simple relationship between redox conditions and organic matter preservation (24, as reviewed by ref. 25). Thus, the culmination of a positive CIE does not require global ocean deoxygenation or even increased organic carbon burial (22, 24–27), as carbon isotopes ultimately track the balance of all the input and output fluxes and associated isotope fractionations (22). For this reason, carbon isotope data cannot be used alone as a proxy for the expansion of oceanic anoxia. Additionally, evidence for decreasing marine oxygen inventories leading to OAEs is hampered since redox proxies typically constrain the most extreme euxinic (oxygen-free, sulfide-containing waters) end member (28–31). As such, uniquely constraining the global extent of non-sulfidic, anoxic waters has not been possible. This bias highlights the need for a more sensitive proxy that constrains more subtle changes in oceanic oxygen levels during OAEs and other oceanographic events in Earth history.

Using thallium isotopes to track global marine oxygen contents

Thallium isotopes in organic-matter-rich mudstones provide a novel window to secular variations in the oceanic oxygen inventory over the expanded T-OAE interval from the latest Pliensbachian to middle Toarcian (see Supplemental Information for Tl isotope nomenclature). The modern open ocean seawater Tl isotope composition (with a residence time of ca. 20 ka) is homogenous to within < 0.5 ε-units (32–34), and this seawater value is captured in the sediments deposited in euxinic settings (34). Thallium is introduced to the ocean by rivers, high-temperature hydrothermal fluids, volcanic emissions, mineral aerosols, and pore-water fluxes from continental-margin sediments. These sources have essentially identical Tl isotopic compositions of ε^{205}Tl ~ 2
(as reviewed in ref. 35), which reflects minimal isotope fractionation during continental weathering and high-temperature mobilization of Tl. The major outputs of Tl from the marine system include adsorption onto manganese (Mn)-oxides and, low-temperature (<100°C) alteration of oceanic crust (AOC). Sedimentation of organic matter and sulfide minerals in low oxygen settings also removes Tl from seawater, but the global flux is relatively minor in the modern ocean (34, 36). Adsorption onto Mn-oxides and AOC are the only known processes that fractionate Tl.

Specifically, Mn oxides are heavier than seawater by ~+13-19 ε-units, which is likely due to equilibrium isotope fractionation during oxidation of univalent aqueous Tl to trivalent Tl when permanently sorbed to Mn oxides (35, 37, 38). The uncertainty associated with the Tl isotope fractionation factor during sorption to Mn oxides relates to Tl isotope variations found in some pelagic clays with somewhat less positive compositions (39). However, pure Mn oxides as found in Fe-Mn crusts display relatively constant offsets from seawater of ~+19±2 ε-units (32, 35), which is the preferred value for Tl isotope fractionation during sorption to Mn oxides.

The mechanism of Tl isotope fractionation during incorporation into AOC is less well understood but is likely a kinetic process whereby the light isotope is preferentially incorporated into AOC (35). Although individual samples of AOC can exhibit ε^{205}Tl ~ -15 (40) the average is more likely closer to ε^{205}Tl ~ -7 because uptake is close to quantitative from the circulating hydrothermal fluids (35), thus the fractionation from seawater is minimal.

Although the marine Tl residence time is long enough to produce a globally homogenous Tl isotope composition of the ocean it is still short enough that seawater ε^{205}Tl can respond to rapid global changes in Mn-oxide burial on glacial-interglacial timescales (35; 41). In contrast, AOC deposition rates vary on extremely long timescales (>10⁷ years) as it responds primarily to global average ocean crust production rates (42) and, hence, ε^{205}Tl$_{seawater}$ variations on timescales shorter
than ~1 million years are most likely driven by changes in Mn-oxide preservation and burial. Crucially, Mn-oxides are only buried in sediments with O_2 present at or near the sediment/water interface because they are rapidly dissolved under anoxic conditions (43). In turn, global Mn-oxide burial fluxes are related to the global extent of bottom water anoxia (34). As such, $\varepsilon^{205}\text{Tl}_{\text{seawater}}$ can be related to relative changes in oceanic oxygenation. Thallium isotopes have been applied to only one ancient climate perturbation that documents the global relationship between oceanic oxygenation leading up to the Cenomanian-Turonian event of OAE 2 (41), and it was shown that changes in carbon isotopes lagged the onset of marine deoxygenation, which underlines the potential for Tl isotopes to provide unique information about ancient oceanic oxygenation. During intervals of increased bottom water oxygen extent, $\varepsilon^{205}\text{Tl}_{\text{seawater}}$ values will be more negative, whereas during intervals of decreased bottom water oxygen extent (increase of bottom water anoxia), $\varepsilon^{205}\text{Tl}_{\text{seawater}}$ values will be more positive and approach their source value ($\varepsilon^{205}\text{Tl} = -2$).

Study site selection

To reconstruct global ocean oxygen contents (or redox changes) using the Tl isotope system, it is necessary to constrain local water column redox conditions to be sure to capture the seawater value, thus avoiding any local Mn-oxide signatures. This is because variations in local sedimentary redox conditions and basinal restriction can influence the isotopic signals captured in the sedimentary record and can hamper the use of these records to reconstruct changes in global marine redox conditions (31, 36, 45, 46). Therefore, it is important to investigate multiple localities that were well-connected to the open ocean and have independent constraints on local redox conditions (e.g., 41, 47). Here, we analyzed samples from two Lower Jurassic successions that contain intervals that were deposited under euxinic conditions—as identified by established,
independent proxies for local redox, including Fe speciation—before, during, and after the T-OAE (Fig. 2 and SI Figs. 1, 2). We first investigated three Pliensbachian and Toarcian sections of the Fernie Formation from the Western Canada Sedimentary Basin, which represent deposition on an open-ocean margin of northeastern Panthalassa (Fig. 2). These samples were taken from outcrop (East Tributary) and two cores (1-35-62-20W5, 6-32-75-5W6). The other studied Toarcian succession, Dotternhausen Quarry, Germany, represents deposition in a semi-restricted structural basin in the European epeiric sea, which was connected to the Tethys Ocean (48) (Fig. 2).

Results

Data from the base of the East Tributary section, within the Pliensbachian portion of the section (*Amaltheus margaritatus* ammonite Zone in Northwest Europe and *Fanninoceras kunae* ammonite Zone in North America) start with a $\varepsilon^{205}\text{Tl}$ of \sim6 (Fig. 3). These values are similar to the $\varepsilon^{205}\text{Tl}$ of modern seawater (34) and suggest a similar global Tl isotopic mass balance tied to Mn-oxide burial and similar extents of oxygenated bottom waters. At the Pliensbachian/Toarcian boundary, $\varepsilon^{205}\text{Tl}$ gradually shifts to less negative values and remains steady until the onset of the negative Toarcian CIE. We interpret this initial rise in $\varepsilon^{205}\text{Tl}$ as the beginning of the expansion of oceanic anoxia before the classically defined T-OAE (see Fig. 1) with a date of \sim183.65 Ma (\pm ~0.150 Ma) (49)—approximately 500–600 kyr before the onset of the negative CIE (50, 51) that traditionally defines the base of the T-OAE. Furthermore, our $\delta^{13}\text{C}$ and $\varepsilon^{205}\text{Tl}$ data from two drill cores from elsewhere in the Western Canada Sedimentary Basin show similar values and trends (see SI Figs 1 and 2), suggesting that they capture global signals and that Early Jurassic seawater $\varepsilon^{205}\text{Tl}$ values are also homogenous.

The German Dotternhausen Quarry section (31, 48), where the Pliensbachian/Toarcian
boundary is not present, shows time-equivalent ε^{205}Tl values (~4) that are nearly identical, within analytical error, to results from Canada (~3.5) for the lower Toarcian *Dactylioceras tenuicostatum* (equivalent) ammonite Zone (Fig. 3). The ε^{205}Tl values increase at the onset of the negative CIE, gradually decrease during the minimum of the CIE, and increase during the rising limb of the carbon isotope data (Fig. 3). A longer-term decrease of Tl isotopes occurs after the end of the negative CIE to the top of the section (Fig. 3). The similarities among all the study sites support the interpretation that these Tl isotope records represent primary global ocean signals, even in the more restricted setting of the German section.

Discussion

The shift in Tl isotopes from -6 to -4, as observed at the Pliensbachian/Toarcian boundary (Fig. 3), based on isotope mass balance calculations, requires a ~50% decrease in the global burial of Mn-oxides (34). In all likelihood, the decline in marine Mn-oxide burial was linked to an expansion of bottom water anoxia, which restricted the area of oxic sediment deposition. This initial deoxygenation is notable because it generally coincides with 1) the interpreted onset of Karoo-Ferrar LIP activity (52, 53) at the start of the longer-term positive CIE, 3) initiation of a radiogenic osmium isotope excursion (49, 54), and 4) the beginning of a major marine extinction event (beginning of Phase 3 of ref. 19) (Fig. 4). These observations are consistent with marine deoxygenation caused by an increase in organic carbon export linked to enhanced chemical weathering and nutrient input to the oceans. This sequence led to increased oxygen consumption in the aphotic zone—driving the expansion of oxygen minima in the ocean that is recorded by Tl isotopes. The 187Os/188Os$_i$ values decline soon after the Pliensbachian/Toarcian boundary (49, 54), suggesting that the rate of continental weathering declined. Thus, the sustained deoxygenation and
elevated organic carbon burial (Figs. 3 and 4), evidenced by the thallium and carbon isotope records, respectively, were mediated by processes internal to the oceans rather than the continued, elevated supply of nutrients from rivers. Such internal processes could be lower oxygen solubility, changes in ocean circulation under a warming climate, and/or the enhanced recycling of bio-essential nutrients, such as phosphorus, under more reducing conditions.

The Th isotope trends during the negative CIE (i.e., the traditional T-OAE interval) also suggest that global bottom water redox did not remain constant over the event. The shift from -3.5 to -2 and a return to -3.5, observed both in Canada and Germany, indicate another deoxygenation event and decrease in the global burial of Mn-oxides (Fig. 3). This perturbation likely occurred over approximately 30 to 50 kyr assuming the timescale of refs. 50 and 55 (the T-OAE negative CIE has been assigned a duration of ~300 to 500 kyr, which locally is represented in ~4.5m in Alberta) and linear sedimentation rates in Canada (from 11.345 to 11.84 m in the section) (49). The continued positive shift in the Th isotope data during the recovery limb of the negative CIE of the T-OAE would require further marine deoxygenation and an additional ~25% reduction in global Mn-oxide burial (34). The dissolution of Mn-oxides could be driven by permanent anoxia or more realistically, transient deoxygenation that includes seasonal, centennial, and/or longer timescales depending on local hydrography, water chemistry, and sedimentation rates. Both the Pliensbachian/Toarcian Boundary and the onset of the traditional T-OAE interval are associated with increased Mn/Ca values (56, 57), which could be due to the increased dissolved Mn reservoir associated with the dissolution of Mn-oxides and reduction of Mn-oxide precipitation.

The traditional T-OAE interval (i.e., as defined by the negative CIE) is associated with the main phase of Karoo-Ferrar LIP magmatism (50, 52, 58). This magmatic pulse would have caused global warming and enhanced continental weathering, as suggested by numerical modeling and
geochemical and sedimentological records (49, 54, 59, 60). The net result would have been marine
eutrophication and intensified and more widespread oxygen minima (e.g., 5, 49, 60). The second
$\epsilon^{205}\text{Tl}$ shift during the rising limb of the T-OAE CIE is roughly coincident with previously
interpreted maximum extents of water-column sulfidic anoxia (i.e., euxinia) during this event (31,
61). This second deoxygenation event corresponds to a further decline in marine diversity (end of
phase 3 in ref. 19)—that is, a continuation and ultimately the acme of the event that started at the
Pliensbachian/Toarcian boundary (17, 18, 62–64) (Fig. 4). Given that these major losses in marine
diversity occur coincidently with changes observed in the Tl isotope record (Fig. 4), ocean
deoxygenation is implied as a significant or even the ultimate driver of extinction during this time.
This interpretation does not, however, preclude a role by other environmental changes that may
have occurred over this time in response to increasing $p\text{CO}_2$ (e.g., global warming and ocean
acidification).

Interestingly, the $\epsilon^{205}\text{Tl}$ data do not immediately return to pre-event values after the peak
of the positive CIE and remain high through the Harpoceras falciferum and lower Hildoceras
bifrons ammonite Zones as $\delta^{13}\text{C}$ declines (Fig. 3). A similar pattern has been observed in the Tl
isotope record of OAE-2 marked by values that remain high well after the end of the positive CIE
(38). The decoupling of the two isotope systems suggests that global Mn-oxide burial remained
low and bottom-water oxygen minima continued well after the termination of globally enhanced
organic carbon burial rates during both OAEs.

One interpretation for this observation could be that while overall organic carbon burial
decreased, productivity was sufficiently high to maintain the consumption of deeper water oxygen
renewal (41). This scenario seems to be supported by the Os isotope record, which also remains
elevated above pre-event values over this same interval (49, 54) and indicates continued elevated
continental weathering rates. Thus, the continued enhanced delivery of nutrients from weathering on the continents would have fueled elevated primary production that could have maintained the widespread expanded marine anoxia. Alternatively, large amounts of near-surface organic matter previously deposited during the event could have continued to drive bottom-water oxygen consumption and Mn-oxide dissolution during a time when new organic matter burial waned. This mechanism may also explain the elevated rates of pyrite burial inferred from the carbonate-associated-sulfate sulfur isotope records that persist well after the CIE in both the T-OAE (61) and OAE-2 (65). Consumption of organic matter in shallowly buried sediments might have fueled marine anoxia and pyrite burial well after the CIEs, irrespective of the flux of newly exported organic matter.

Conclusions

The Tl isotope data presented here reveal a more nuanced and explicit evidence for marine deoxygenation in the interval that surrounds the T-OAE, which began at the Pliensbachian/Toarcian boundary and expanded oxygen minima were sustained throughout the early Toarcian and well after the traditionally defined T-OAE interval. Since the Tl isotope excursion begins at the Pliensbachian/Toarcian boundary and generally corresponds with 1) the initiation of massive volcanism, 2) a brief but significant increase in continental weathering, and 3) the start of the protracted early Toarcian mass extinction event (19). Thus, this evidence for global marine deoxygenation provides a mechanism for the observed extinction record. Further, the current definition of the beginning of T-OAE, based on the start of the negative CIE and/or first occurrence of black shales in Europe, represents the nadir of the deterioration of environmental conditions, but not the onset of global deoxygenation.
The concept of an OAE was proposed due to the realization that the preservation of organic matter in marine sediments might not always be the product of local conditions. It followed that carbon isotope excursions became the signature of enhanced burial of organic carbon on a global scale. Our study highlights the need to revisit our definition of the temporal OAE and consider whether for the record of oceanic anoxia might be better defined by other geochemical proxies that reconstruct specific redox states of the global ocean. Perhaps more importantly, the acknowledgment that global deoxygenation may expand beyond the traditionally defined OAEs has important implications for our understanding of the environmental feedbacks that lead to and maintain these events. Identifying such processes would be key to determining the consequences and potential endpoints of the recent trend in deoxygenation in the oceans today.

ACKNOWLEDGMENTS

TRT would like to thank the FSU Arts and Sciences Postdoctoral Fellowship, GSA, AAPG, SEPM, and Virginia Tech for funding. Grants to BCG (NSF EAR-1324752), JDO and SGN (NSF OCE-1624895 and NASA NNX16AJ60G), and TWL (NSF EAR-0719911) also funded this work. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. We thank Hannah Grove, Brett Holdaway, and Ashley Prow for laboratory assistance. Alberta outcrop collections were authorized by the following permits: Parks Canada, Permit No: YHTR-2014-16156; RTMP, Permit No: 13-058, 14-009, 15-019. Finally, we would like to thank two anonymous reviewers whose comments greatly improved the manuscript.

Author Contributions
TRT, BCG, and JDO designed the study. TRT, AHC, AMG, BCG, and SMM collected samples. AHC identified the ammonites. TRT, BCG, SMM, and JDO conducted the geochemical analyses. TRT wrote the paper with significant contributions from all the authors.

References and Notes:

Fig. 1: A) Idealized Pliensbachian and Toarcian carbon isotope stratigraphy (derived from multiple \(\delta^{13}C \) records from Europe and North America shown in SI Fig. 3). Note the long-term positive CIE predating the negative CIE associated with the classic T-OAE interval.

Fig. 2: Global paleogeography of early Toarcian (modified from refs. 21, 49, 66). Black circles represent the study areas. Dashed extent of the Karoo-Ferrar LIP shown in southern Pangaea. Dark grey represents landmasses, light blue: shallow seas, and dark blue: open oceans. CPM = Central Pangaean Mountains.

Fig. 3: Chemostratigraphy of the Lower Jurassic Fernie Formation from East Tributary of Bighorn Creek Alberta and of the Lower Jurassic Posidonia Shale from the Dotternhausen Quarry in Germany. \(\delta^{13}C_{\text{org}} \) = organic carbon isotopic compositions from refs. 21 and 31. \(\text{Fe}_{\text{HR}}/\text{Fe}_{\text{T}} \) = amount of highly reactive iron relative to total iron, and \(\text{Fe}_{\text{Py}}/\text{Fe}_{\text{HR}} \) = amount of pyrite iron relative to highly reactive iron (see SI Materials and Methods for discussion of this redox proxy). \(\varepsilon^{205}\text{Tl} \) = thallium isotopic composition of seawater during deposition. Lithostratigraphic members of the Fernie Formation, Stages of the Jurassic, and ammonite zonations for both northwestern Europe and western North American shown to the left of the stratigraphic column (refer to ref. Them17a and SI Text for the details of their placements). Vertical gray line in \(^{205}\text{Tl} \) records are the modern \(^{205}\text{Tl}_{\text{sw}} \) composition of \(\sim -6 \) (34). Light gray \(\varepsilon^{205}\text{Tl} \) values in the German section are from lithologies that are not ideal for metal isotope studies (low TOC < 0.3\%.), and we therefore do not interpret these as primary oceanographic signals (see SI Text). Gray boxes represent CIE intervals.
Fig. 4: Sequence of events culminating in the Early Jurassic T-OAE (as delineated by changes in the precipitation of manganese oxyhydroxides at the sediment-water interface, documented by shifts in the 205Tl composition of anoxic sediments) and carbon burial event (as delineated by changes to the global carbon cycle, documented by changes in the δ^{13}C of organic and inorganic carbon). As the Karoo-Ferrar LIP is emplaced (3, 52, 57), global ocean deoxygenation may occur concurrently as sea surface temperatures rise (67). Massive injections of greenhouse gases and cascading biogeochemical feedbacks cause the second decline in biodiversity associated with the T-OAE negative CIE interval. The extent of anoxic marine bottom waters increases as bioproductivity increases due to increased continental weathering and delivery of nutrients to the oceans (49, 54), leading to the increased geographic extent of euxinia (31, 61), culminating in an interval of maximum organic carbon burial, which causes the positive CIE. Increased oceanic anoxia occurs concurrently with the onset of the main extinction event at the Pliensbachian/Toarcian boundary (19, 63), and the greatest extent of anoxia and euxinia occurs during the large, negative CIE interval (61, this study). White arrows represent “Phase 2” of the Karoo-Ferrar eruptive scenario (52). Timescale is derived from ref. 51.

Supplementary Materials: Methods and Materials, Supplementary Text, Figures S1, S2, S3, References, Databases S1 to S4.

Additional Information

Competing financial interests: The authors declare no competing financial interests
Fig. 1
Toarcian paleogeography

- Study locations
- Karoo-Ferrar LIP
- Central Pangaeanean Mountains

Fig. 2

Alberta, Canada
North America
Europe
Asia
PANTHALASSA
PANGAEA
TETHYS OCEAN

Dotternhausen, Germany

North America
CPM
South America
Africa
India
Australia
Antarctica

Central Pangaeanean Mountains

Canada

North America

Europe

Asia

North America

Europe

Asia
Fig. 3
Supplementary Materials for

Thallium isotopes reveal protracted anoxia associated with volcanism, carbon burial and extinction during the Toarcian (Early Jurassic)

correspondence to: them@fsu.edu

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S3
References

Other Supplementary Materials for this manuscript includes the following:

Database S1: Geochemistry for East Tributary section.
Database S2: Geochemistry for drill core 1-35-62-20W5.
Database S3: Geochemistry for drill core 6-32-75-5W6.
Database S4: Geochemistry for Dotternhausen section.
Materials and Methods

Sampling Locations and Materials

Published accounts of the collective lithostratigraphy, ammonite biostratigraphy, U-Pb zircon age dates, and high-resolution carbon isotope chemostratigraphy for the East Tributary and Dotternhausen Quarry can be found in refs. 1, 2, 3, 4. Here, we discuss and summarize key aspects of these analyses as they pertain to our study.

Drill cores 1-35-62-20W5 and 6-32-78-5W6 (SI Figs. 1, 2) of the Fernie Formation were described and sampled for geochemical analyses at the Core Research Centre in Calgary, Alberta, Canada. They contain the Pliensbachian to lower Toarcian Gordondale and Poker Chip Shale (PCS) members, and have been correlated by geophysical gamma ray logs, ammonites, and carbon isotopes to outcrops of Red Deer and PCS, including East Tributary (1, 5, 6). Each core contains mixed organic-rich calcareous mudstones and siltstones in the Gordondale Member, which are overlain by organic-rich calcareous mudstones of the PCS (5).

Core 1-35-62-20W5 contains alternating organic-rich calcareous siltstones and mudstones (SI Fig. 1) of the Gordondale and PCS members. The Gordondale Member ranges from the base of the core to 2029 m and contains several bivalve beds (5) and the Pliensbachian (Freboldi Zone) ammonite Dubariceras cf. silviesi at 2033.3 m. The PCS Member comprises 2029 m to the top of the core (5) and contains organic-rich calcareous mudstones, displacive and diagenetic carbonate cements and fans, with abundant bivalves, the cephalopod Atractites, and the Toarcian ammonite Dactylioceras sp. at 2027.1 m (5).

Core 6-32-78-5W6 contains alternating organic-rich calcareous siltstones and mudstones (SI Fig. 2) of the Gordondale and PCS members. The Gordondale Member ranges from the base of the core to ~1219 meters (5) and contains several bivalve beds, the Pliensbachian ammonite Amathheus sp. at 1221.8 m, and Toarcian Kanense to Planulata Zone equivalent Dactylioceras cf. crosbeyi and Cleviseras exaratum at 1217.9 and 1217.8 meters, respectively. From 1221 to 1219 m, the dominant lithology is an organic-rich mudstone, with a thin, organic-rich, silty mudstone capped by a displacive carbonate fan around 1220.25 m. From 1219 to 1214.6 m, the dominant lithology is an organic-rich, laminated, calcareous siltstone, with many bitumen-rich intervals. The PCS Member comprises 1214.6 m to the top of the core (5) and contains organic-rich calcareous mudstones, rare bivalves, and often contains intervals that are laminated.

These sections represent an excellent opportunity to use the Toarcian CIE as an intra-basinal and a global chemostratigraphic marker (SI Fig. 3); since these cores represent time-correlative, deeper-water facies to the East Tributary section (5), it is possible to reconstruct paleoceanographic dynamics across the T-OAE. Specifically, if redox variations change with paleo-water depth, and potentially temporally, then it should be possible to reconstruct the temporal and spatial extent of oxygenation within the basin.

Total organic carbon contents (TOC) and isotope compositions (δ¹³Corg)

Carbon-isotope and total organic carbon content data of the East Tributary and Dotternhausen sites were recently reported by refs. 1, 2 and ref. 4, respectively. The new data presented here are from the 1-35-62-20W5 and 6-32-78-5W6 drill cores and follow the methods in refs. 1, 2, 4.

Powders were obtained from the drill core and outcrops samples either using a handheld Dremel tool with a diamond tip drill bit or a ball mill using a silica nitride ceramic vial set. To remove the carbonate fraction, several milliliters of 2N HCl were added to ~0.1 g of powder and allowed to react for ~24 hours. The solution was rinsed until a neutral pH was obtained, and then
the samples were dried in an oven.

\[\delta^{13}C_{\text{org}} \] and total organic carbon (TOC) values of the carbonate-free sample residues were conducted on an Isotope Cube elemental analyzer connected to an Isoprime 100 gas source isotope-ratio mass spectrometer (IRMS) in the Sedimentary Geochemistry Isotope Laboratory in the Department of Geosciences at Virginia Tech. The isotope compositions of the samples were expressed in the standard delta (\(\delta \)) notation as per mil deviations (‰) from Vienna Pee Dee Belemnite (VPDB) and calculated such that:

\[
\delta^{13}C = \left[\frac{\left(^{13}C/^{12}C \right)_{\text{sample}} - \left(^{13}C/^{12}C \right)_{\text{standard}}}{\left(^{13}C/^{12}C \right)_{\text{standard}}} \right] \times 1000 \quad \text{Eq. 1}
\]

Samples were calibrated to the VPDB scale using international (IAEA-CH-6 and IAEA-CH-7) and commercial standards (Elemental Microanalysis wheat flour, sorghum flour, low organic soil, and urea). Long-term analytical precision for the \(\delta^{13}C \) measurements is <0.1‰ based on replicated analyses on isotope standards: this provided a linear range in \(\delta^{13}C \) between -48.66‰ and -10.42‰. Total organic carbon was obtained as part of the isotopic analysis using elemental standards (i.e., Acetanilide, 71.09% C). Approximately 66% of total samples (n = 86) from core 6-32-78-5W6 were replicated at least once. Approximately 91% of total samples (n = 78) from core 1-35-62-20W5 were replicated at least once. Average analytical uncertainty for replicated analyses (n = 128) was 0.07‰.

Iron speciation analysis

The amount of iron found in various mineral phases (iron speciation) of fine-grained siliciclastic units can be used to identify local modern and ancient water column redox conditions (7-10). Specifically, the amount highly reactive iron-bearing phases (Fe\(_{HR} \); see Equation 2) can be quantified to determine local redox conditions during deposition (11). The Fe\(_{HR} \) pool represents available iron that reacts with aqueous sulfide to form pyrite (12). The highly reactive iron pool (e.g., 10) is defined as:

\[
\text{Fe}_{HR} = \text{Fe}^{\text{py}} + \text{Fe}^{\text{carb}} + \text{Fe}^{\text{ox}} + \text{Fe}^{\text{mag}} \quad \text{Eq. 2}
\]

where Fe\(_{py} \) represents iron bound as pyrite; Fe\(_{carb} \) represents iron hosted in carbonate phases including calcite, siderite, and ankerite; Fe\(_{ox} \) represents iron hosted in the ferrihydrite, lepidocrocite, goethite, and hematite fractions; and Fe\(_{mag} \) represents iron hosted in the magnetite fraction.

Modern and ancient marine siliciclastic sediments deposited under an anoxic water column have a Fe\(_{HR}/\text{FeT} \) (Fe\(_T \) represents total iron in the sample) value of >0.38, whereas sediments deposited under an oxic water column are generally below 0.22 (7, 11, 13). Because the amount of pyrite that can be deposited in anoxic environments during the microbial reduction of sulfate (e.g., 12) can vary, the amount of Fe\(_{py} \) to Fe\(_{HR} \) in each sample can help discern whether the water column was ferruginous (pyrite formation limited by available sulfides) or euxinic (pyrite formation limited by available reactive iron). Fe\(_{py}/\text{Fe}_{HR} \) values > ~0.7-0.8 are indicative of water column euxinia, whereas Fe\(_{py}/\text{Fe}_{HR} \) values < ~0.7-0.8 are indicative of ferruginous conditions (11, 14, 15).

To determine the relative amount of iron in each iron-bearing phase, the sequential extraction method of ref. 8 was performed at the Department of Geosciences at Virginia Tech. For this procedure, approximately 0.1 grams of powder was used. First, Fe\(_{carb} \) was liberated by the
addition of a 10mL solution of 1M sodium acetate and acetic acid, buffered to pH of 4. These samples were placed on a shaking table for 48 hours at 50° C and then centrifuged. Next, Fe$_{ox}$ was liberated from the samples by the addition of a 10mL solution of sodium dithionite and sodium citrate, buffered to pH of 4. These samples were placed on a shaking table for two hours, and then centrifuged. Finally, Fe$_{mag}$ was liberated by the addition of a 10mL solution of ammonium oxalate. These samples were placed on a shaking table for six hours, and then centrifuged. After each extraction, 100 µL of the supernatant was transferred to a new tube, followed by the addition of 4 mL of HEPES, ferrozine, and hydroxylamine HCl solution (e.g., 16) and allowed to react overnight. All of the supernatant was removed in the original sample tubes before the next iron extraction. Iron concentrations were measured in a spectrophotometer and calculated by a matrix-matched standard curve (e.g., 17).

Fe$_{py}$ values were determined by chromium reduction methods of ref. 18. For this procedure, approximately 0.1 grams of powder was added to a three-neck flask for a distillation extraction. Following the purging of headspace with nitrogen gas a solution of 40 mL of 1M chromous chloride and 20 mL of 6N HCl was added to the flask, and then allowed to react for two hours while heating under the nitrogen atmosphere. Any volatized sulfide quantitatively reacted with a zinc acetate solution to form zinc sulfide. Later, silver nitrate was added to this solution, which converted the zinc sulfide to silver sulfide. The amount of sulfide in the sample was then determined by gravimetry after filtration and drying of the silver sulfide. The amount of pyrite iron hosted in the original sample was then stoichiometrically calculated from the amount of extracted sulfide.

For the determination of Fe$_T$ approximately 0.2 grams of powder was ashed at 900° C for 6-8 hours to remove any organic matter and other volatile phases. Approximately 0.1 grams of powder was partially dissolved using 4 mL of 12M HCl, and then placed in a trace metal clean Teflon Savillex digestion vessel on a hot plate and boiled for 36-48 hours (19). The sample and solution were added to centrifuge tubes and centrifuged. After centrifugation, 100 µL of the supernatant was transferred to a new tube and the same technique was used to measure iron concentrations using a spectrophotometer as stated previously.

Iron concentrations were calculated by a matrix-matched standard curve. New standard solutions were prepared for each analysis with iron standard concentrations at 0, 5, 10, 20, 30, 40, 75, 150, and 300 ppm. The r2 value of the standard curve was always above 0.999 and many instances was 1. Multiple analyses of the same solution yielded no error via spectrophotometer output, and no samples yielded higher iron concentrations than the standards. Sample reproducibility using this method is often ± 7% when analyzing different aliquots of the same extracted iron pool (e.g., 17).

Thallium isotope analysis

The precipitation of manganese oxides is directly controlled by available oxygen, and therefore ceases in low oxygen environments. As manganese oxide precipitation decreases during the onset of widespread deoxygenation in the oceans, changes the Ti elemental and isotopic budget are the first systems to be perturbed (20). To assess the global dynamics of oceanic oxygenation during the Early Jurassic, this study utilizes a novel isotopic system that is not fractionated by biological processes in the open ocean (23). Thallium has two naturally occurring isotopes: 203Tl and 205Tl. The thallium isotopic composition of a sample is compared to the NIST SRM 997 Tl standard and reported such that:

$$e^{205\text{Tl}} = 10,000 \times \left(\frac{^{205\text{Tl}}/^{203\text{Tl}}_{\text{sample}}}{^{205\text{Tl}}/^{203\text{Tl}}_{\text{SRM 997}}} \right) / \left(\frac{^{205\text{Tl}}/^{203\text{Tl}}_{\text{SRM 997}}}{^{205\text{Tl}}/^{203\text{Tl}}_{\text{SRM 997}}} \right)$$ \text{Eq. 3}
To track manganese oxide burial during the Early Jurassic, chemical analysis (21, 22) was utilized to isolate thallium in a state-of-the-art clean laboratory at the National High Magnetic Field Laboratory at Florida State University. For this procedure, approximately 0.05 grams of sample powder (0.1 grams of standard SCO-1) was placed into a trace metal clean teflon savillex beaker with 3mL of 2M HNO₃ was added and placed on a hot plate for approximately 12 hours at 130° C. These samples were then centrifuged, and the supernatant was collected and placed in a new, clean savillex beaker, and dried. Care was taken to not collect siliciclastic materials, and to ensure limited siliciclastic Tl contamination HF was avoided. Several high-purity acid treatments (aqua regia, 50% conc. HCl or HNO₃ + H₂O₂) were added to each beaker to fully oxidize any organic matter present. These solutions were placed on hot plates at 120-130° C for several days if necessary. To completely oxidize samples for column chemistry, 1 M HCl and ~100 µL brominated H₂O were added to each beaker the previous night. All acids and reagents were trace metal grade to ensure low blank levels.

For column chemistry, we followed the method of refs. 23-25 (described below), but this dataset only used one micro-column procedure, which was shown to work well for high Tl and low Pb samples (22). For Pb removal, AG1X8 200-400 mesh resin was added to each column. This was followed by the addition of solutions 0.1 ml and 1.5 ml of each HCl-SO₂, 0.1M HCl, and 0.1 M HCl with 1% Br₂-H₂O. Samples were loaded into the columns, followed by the addition of 0.1 ml and 1.5 ml solutions of 0.5 M HNO₃ – 3% Br₂-H₂O, 2.0 M HNO₃ – 3% Br₂-H₂O, and 0.1 M HCl – 1% Br₂-H₂O. Thallium was then collected using 0.1 ml and 1.5 ml of 0.1 M HCl-SO₂ solution. Importantly, H₂SO₄ was evaporated at high temperature, and each sample was dissolved in a 0.1 M HNO₃ + 0.1% H₂SO₄ solution. A 10-µL aliquot of this solution was analyzed with an Agilent 7500cs ICP-MS to measure Pb and Tl abundances. Using these concentration data, sample concentrations were matched to within 25% of standard and spiked with an abundance of NIST SRM 997 Pb standard. Thallium isotope measurements were performed on a Thermo Neptune MC-ICP-MS at FSU. Approximately 90% of the samples were analyzed at least twice (some samples were not replicated due to sample limitation). The average 2σ standard deviation for all replicated samples is ± 0.25 epsilon units or better. The long-term average ε²⁰⁵Tl value for the SCo-1 standard is -3.0 ± 0.3 and all of our SCo-1 values were within this range. Samples that had reproducibility under 0.3 were displayed with an uncertainty of 0.3 (long-term reproducibility of SCo-1 standard), and samples that had reproducibility above 0.3 are displayed with that specific uncertainty.

Supplementary Text

Revised placement of Pliensbachian-Toarcian boundary at East Tributary section

The original placement of the Pliensbachian-Toarcian boundary at East Tributary was placed at ~10.15 m based on the first appearance of the Toarcian ammonites Cleicerca exaratum and Hildaites cf. murleyi (1). However, the boundary could feasibly occur between ~8.5 m and 10.15 m, as this interval also includes ammonites that are known to span the Pliensbachian-Toarcian boundary in western North America (i.e., Tiltoniceras cf. antiquum and Protogrammoceras paltum (27, 28). Regardless of boundary placement our interpretations remain consistent in that water column deoxygenation predated the large negative CIE of the T-OAE, rather occurring at the Pliensbachian-Toarcian boundary over a time-frame that is coeval with phase 3 of the multi-phased Pliensbachian-Toarcian mass extinction (29) and supported by osmium isotope geochemical records (2, 30) and the absolute ages of the Pliensbachian-Toarcian boundary (2, 31, 32). Therefore, deoxygenation would still be considered as a major driver for the
main phase of this mass extinction event.

Positive carbon isotope excursion during the early Toarcian (pre-T-OAE CIE)

In Fig. 1 of the main text, the long-term, globally observed positive carbon isotope excursion during the early Toarcian is noted. This phenomenon is observed in inorganic and organic matter of marine and terrestrial carbon in several locations from Europe, Africa, and North America (1, 33-39) (Fig. S3). The new thallium isotope dataset from western Canada suggest that increased anoxia and burial of organic carbon were the mechanisms behind the long-term positive CIE beginning in the basal Toarcian.

Ammonite zones of new oceanic deoxygenation records

New Tl data from two geographically far removed anoxic basins suggest that the expansion of early Toarcian anoxic bottom began at the base of the correlative Tenuicostatum (northwest Europe and South America), Polymorphum (Mediterranean), Antiquum (High-Arctic), and Kanense (western North America) zones, and continued into the middle Toarcian at a correlative level with the Bifrons Zone of northwest Europe (see ref. 29).

Dotternhausen Quarry Tl isotopes

In Fig. 2 of the main text, several Tl isotope data points below the T-OAE CIE were displayed as light gray. These samples came from carbonate marls with extremely low TOC contents (0.34 – 0.78%) (4). Therefore, we compared only the two Tl isotope data points from the organic-rich black shales (pre-T-OAE) with the organic-rich black shales from the OAE and post-OAE interval. Interpreting the Tl-isotopic composition of the low TOC marls as a proxy for relative global manganese oxide burial is unexplored and could lead to erroneous conclusions as the Tl-isotope proxy (and other metal isotope proxies) have not been developed or tested in such depositional environments.

Yorkshire, UK Tl isotopes

The Tl-isotope results from our two new study sites cannot be directly compared with that of Yorkshire, UK (42). This is because of the interpreted severe basinal restriction that accompanied the T-OAE interval in the Cleveland Basin (43). The basinal restriction associated with this interval is demonstrated to have overprinted rhenium, osmium, and molybdenum systems, which has resulted in isotope stratigraphies that were not indicative of the global record (2, 4, 30, 43). Furthermore, the larger variations in the Tl-isotopes at Yorkshire (42) compared to western North America and Germany (this study) suggest the record is related to regional or local Mn-oxide burial events not well connected with the open ocean.
Fig. S1.

Litho- and Chemo-stratigraphies of the Lower Jurassic Fernie Formation from drill core 1-35-62-20W5, Alberta, Canada. δ¹³Cₐ₉g = organic carbon isotopic compositions. Fe₉₉₀/Fe₉₁ = amount of highly reactive iron relative to total iron, and Fe₉₉₁/Fe₉₀ = amount of pyrite iron relative to highly reactive iron (see SI Materials and Methods for discussion of this local redox proxy). ε²⁰⁵T₁sw = thallium isotopic composition of seawater during deposition. Lithostratigraphic members of the Fernie Formation, Stages of the Jurassic, and ammonite zonations for both northwestern Europe and western North American shown to the left of the stratigraphic column. Gray bar represents approximate expansion of deoxygenated bottom waters near the Pl-To boundary.
Fig. S2.

Litho- and Chemo-stratigraphies of the Lower Jurassic Fernie Formation from drill core 6-32-78-5W6, Alberta, Canada. $\delta^{13}C_{\text{org}}$ = organic carbon isotopic compositions. $\text{Fe}_{\text{HR}}/\text{Fe}_T$ = amount of highly reactive iron relative to total iron, and $\text{Fe}_{\text{Py}}/\text{Fe}_{\text{HR}}$ = amount of pyrite iron relative to highly reactive iron. $\varepsilon^{205}\text{Tl}_{\text{SW}}$ = thallium isotopic composition of seawater during deposition. Lithostratigraphic members of the Fernie Formation, Stages of the Jurassic, and ammonite zonations for both northwestern Europe and western North American shown to the left of the stratigraphic column.
Fig. S3. Carbon-isotope chemostratigraphies of the Pliensbachian and Toarcian stages from multiple locations. δ^{13}C$_{org}$ = organic carbon isotopic compositions; δ^{13}C$_{carb}$ = inorganic carbon isotopic compositions; δ^{13}C$_{wood}$ and δ^{13}C$_{phytoclast}$ = organic carbon isotopic compositions of terrestrial plant wood. These carbon-isotope records all display and long-term positive δ^{13}C trend in the early Toarcian until the pronounced negative CIE associated with the T-OAE (1, 33-39). Dark gray box represents this long-term positive CIE. Light gray box represents the T-OAE CIE. The δ^{13}C isotope record suggests that the increased geographical extent of anoxia increased and resulted in the burial of organic carbon (13C-depleted) and ultimately the globally observed trend in higher δ^{13}C values leading up to the T-OAE.
Additional Data table S1 (separate file)
Iron speciation and thallium isotope data from the East Tributary section.

Additional Data table S2 (separate file)
Carbon isotope, total organic carbon (TOC), iron speciation, and thallium isotope data from drill core 1-35-62-20W5.

Additional Data table S3 (separate file)
Carbon isotope, total organic carbon (TOC), iron speciation, and thallium isotope data from drill core 6-32-75-5W6.

Additional Data table S4 (separate file)
Iron speciation and thallium isotope data from the Dotternhausen section.
References

36. Littler K, Hesselbo SP, Jenkyns HC (2011) A carbon-isotope perturbation at the

