Skip to main content

Research Repository

Advanced Search

Effect of Hand Positioning on DXA Total and Regional Bone and Body Composition Parameters, Precision Error, and Least Significant Change

Thurlow, S.; Oldroyd, B.; Hind, K.

Effect of Hand Positioning on DXA Total and Regional Bone and Body Composition Parameters, Precision Error, and Least Significant Change Thumbnail


Authors

S. Thurlow

B. Oldroyd

K. Hind



Abstract

Dual-energy X-ray absorptiometry (DXA) body composition measurements are performed in both clinical and research settings for estimations of total and regional fat mass, lean tissue mass, and bone mineral content. Subject positioning influences precision and positioning instructions vary between manufacturers. The aim of the study was to determine the effect of hand position and scan mode on regional and total body bone and body composition parameters and determine protocol-specific body composition precision errors. Thirty-eight healthy subjects (men; mean age: 27.1 ± 12.1 yr) received 4 consecutive total body GE-Lunar iDXA (enCORE v 15.0) scans with re-positioning, and scan mode was dependent on body size. Twenty-three subjects received scans in standard mode and 15 received scans in thick scan modes. Two scans per subject were conducted with subject hands prone and 2 with hands mid-prone. The precision error (root mean squared standard deviation; percentage coefficient of variation) and least significant change for each protocol were determined using the International Society for Clinical Densitometry calculator. Hands placed in the mid-prone position increased arm bone mineral density (BMD) (standard mode: 0.185 g*cm−2, thick mode: 0.265 g*cm−2; p < 0.05), total body BMD (standard mode: 0.051 g*cm−2, thick mode: 0.069 g*cm−2; p < 0.001), and total body BMD Z-score (standard mode: 0.5. thick mode: 0.7; p < 0.001). This was due to reductions in bone area and bone mineral content. In standard mode, hands mid-prone reduced fat mass (0.05 kg, p < 0.05) and increased lean mass (0.11 kg, p < 0.05). There were no differences in body composition for thick mode scans. Hands mid-prone reduced lean mass precision error at the arms, trunk, and total body (p < 0.01). DXA clinical and research centers are advised to maintain consistency in their hand positioning and scan mode protocols, and consideration should be given to the hand positioning used for reference data. As a best practice recommendation, published DXA-based studies and reports for clinic-based total body assessments should ensure that subject positioning is fully described.

Citation

Thurlow, S., Oldroyd, B., & Hind, K. (2018). Effect of Hand Positioning on DXA Total and Regional Bone and Body Composition Parameters, Precision Error, and Least Significant Change. Journal of Clinical Densitometry, 21(3), 375-382. https://doi.org/10.1016/j.jocd.2017.03.003

Journal Article Type Article
Acceptance Date Mar 23, 2017
Online Publication Date Apr 25, 2017
Publication Date Jul 1, 2018
Deposit Date Sep 5, 2018
Publicly Available Date Sep 12, 2018
Journal Journal of Clinical Densitometry
Print ISSN 1094-6950
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 21
Issue 3
Pages 375-382
DOI https://doi.org/10.1016/j.jocd.2017.03.003
Related Public URLs http://eprints.leedsbeckett.ac.uk/3628/

Files




You might also like



Downloadable Citations