Skip to main content

Research Repository

Advanced Search

Sensory, computational and cognitive components of human colour constancy

Smithson, H.E.

Authors

H.E. Smithson



Abstract

When the illumination on a scene changes, so do the visual signals elicited by that scene. In spite of these changes, the objects within a scene tend to remain constant in their apparent colour. We start this review by discussing the psychophysical procedures that have been used to quantify colour constancy. The transformation imposed on the visual signals by a change in illumination dictates what the visual system must ‘undo’ to achieve constancy. The problem is mathematically underdetermined, and can be solved only by exploiting regularities of the visual world. The last decade has seen a substantial increase in our knowledge of such regularities as technical advances have made it possible to make empirical measurements of large numbers of environmental scenes and illuminants. This review provides a taxonomy of models of human colour constancy based first on the assumptions they make about how the inverse transformation might be simplified, and second, on how the parameters of the inverse transformation might be set by elements of a complex scene. Candidate algorithms for human colour constancy are represented graphically and pictorially, and the availability and utility of an accurate estimate of the illuminant is discussed. Throughout this review, we consider both the information that is, in principle, available and empirical assessments of what information the visual system actually uses. In the final section we discuss where in our visual systems these computations might be implemented.

Citation

Smithson, H. (2005). Sensory, computational and cognitive components of human colour constancy. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1458), 1329-1346. https://doi.org/10.1098/rstb.2005.1633

Journal Article Type Article
Publication Date Jun 29, 2005
Deposit Date Mar 30, 2007
Journal Philosophical Transactions of the Royal Society B: Biological Sciences
Print ISSN 0962-8436
Electronic ISSN 1471-2970
Publisher The Royal Society
Peer Reviewed Peer Reviewed
Volume 360
Issue 1458
Pages 1329-1346
DOI https://doi.org/10.1098/rstb.2005.1633