Skip to main content

Research Repository

Advanced Search

Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes

Tao, R.; Wang, W.B.; Luo, J.T.; Hasan, S.; Torun, H.; Canyelles-Pericas, P.; Zhou, J.; Xuan, W.P.; Cooke, M.; Gibson, D.; Wu, Q.; Ng, W.P.; Luo, J.K.; Fu, Y.Q.

Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes Thumbnail


Authors

R. Tao

W.B. Wang

J.T. Luo

S. Hasan

H. Torun

P. Canyelles-Pericas

J. Zhou

W.P. Xuan

D. Gibson

Q. Wu

W.P. Ng

J.K. Luo

Y.Q. Fu



Abstract

Based on theoretical analysis, finite element simulation and experimental verifications, we have systematically investigated evolution, hybridization and decoupling of multiple acoustic wave modes and vibration patterns generated from piezoelectric film acoustic wave devices fabricated on flexible thin foils/plates. ZnO piezoelectric films deposited on flexible and bendable Al foil and plates were selected for this particular study. The ZnO/Al acoustic wave devices were chosen with wavelengths varied from 12 to 800 μm, ZnO film thickness from 2 to 10 μm and Al foil/plate thickness from 10 to 600 μm. Multiple acoustic wave modes (including symmetrical and asymmetrical Lamb waves, Rayleigh waves and higher harmonic/Sezawa wave modes) were generated, hybridized occasionally with each other, and then easily decoupled by changing the ratios of the substrate/film thicknesses to wavelengths. Ratios between device wavelength and substrate/film thickness have been identified to be the dominant parameter in determining the evolution and hybridization of multiple wave modes and their vibration patterns, which provide useful design guidance for both sensing and microfluidic applications using these flexible and bendable acoustic wave devices.

Citation

Tao, R., Wang, W., Luo, J., Hasan, S., Torun, H., Canyelles-Pericas, P., …Fu, Y. (2019). Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes. Surface and Coatings Technology, 357, 587-594. https://doi.org/10.1016/j.surfcoat.2018.10.042

Journal Article Type Article
Acceptance Date Oct 16, 2018
Online Publication Date Oct 17, 2018
Publication Date Jan 15, 2019
Deposit Date Oct 23, 2018
Publicly Available Date Oct 17, 2019
Journal Surface and Coatings Technology
Print ISSN 0257-8972
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 357
Pages 587-594
DOI https://doi.org/10.1016/j.surfcoat.2018.10.042

Files




You might also like



Downloadable Citations