Effect of inertia on double diffusive bidispersive convection

B. Straughan
Department of Mathematics
University of Durham, DH1 3LE, U.K.

September 3, 2018

Abstract
Convection thresholds in a saturated bidisperse porous material are calculated in the presence of a non-zero coefficient of inertia, the acceleration coefficient, for the fluid velocity in the macro pores. We concentrate on the case where the layer is heated from below and simultaneously salted from below. The effect of increasing the size of the acceleration coefficient is generally to increase the critical Rayleigh number above which convective motion commences, although the precise values depend on the interaction coefficient between the micro and macro pores, the porosities, and the Lewis number.

1 Introduction
Thermal convection in a double porosity material is a topic of increasing research interest. Double porosity materials are also known as bidisperse media and, in addition to possessing the usual macro porosity well known in porous media theory, there are cracks or fissures in the porous skeleton which give rise to a micro porosity. Bidisperse porous materials may also be constructed in a laboratory, as indicated by Nield & Kuznetsov [1]. The topic of heat and mass transfer in a bidisperse porous material has created interest in the chemical engineering literature for quite a while, as witnessed by the work of Burghardt et al. [2], Szczygiel [3, 4] and Valus & Schneider [5]. A major reason why heat and mass transfer in bidisperse porous media theory is of interest is the discovery that these effects are very important in many real engineering and geophysical applications. The book by Straughan [6] discusses several of these applications, but it is cogent to mention some particular ones at this juncture. For example, biporous media feature in wicks in heat pipes, see e.g. Lin et al. [7], Mottet & Prat [8], Taqvi et al. [9], Yeh et al. [10]. Application of bidisperse porous media theory to the mundane but extremely important area of landslides is another diverse area, see e.g. Borja et al. [11], Borja & White [12], Montrasio et al. [13], and Scotto di Santolo & Evangelista [14]. We finally mention stockpiling
In this paper our interest is in double diffusive convection, or thermosolutal convection, in a bidisperse porous body. This involves heat transfer in a bidisperse porous medium when the saturating fluid also contains a concentration of dissolved salt. In the case of a single porosity body thermosolutal convection was first described and the analysis resolved in the fundamental article of Nield [17]. Since then, many articles have appeared in the single porosity case, also dealing with nonlinear stability, see e.g. Barletta & Nield [18], Deepika [19], Deepika & Narayana [20], Harfash [21], Harfash & Hill [22], Hill & Morad [23], Love et al. [24], Mulone [25], Simmons et al. [26], Straughan [27, 28, 29]. A theory of and analysis for double diffusive convection in a bidisperse porous material was presented by Straughan [30], who neglected inertia in the fluid in both the macro and micro phases.

Nield & Bejan [31] devote much of section 1.5 of their book to models which incorporate inertia. In a single porosity medium the momentum equation is given by, Nield & Bejan [31],

$$\rho c_a \frac{\partial v_i}{\partial t} + \rho c_F \sqrt{K} |v_i| v_i = -p_i - \frac{\mu}{K} v_i,$$

where ρ is fluid density, v_i velocity, K is permeability, p pressure, μ dynamic viscosity, c_a is the acceleration coefficient and c_F is a dimensionless form drag coefficient. As Nield & Bejan [31] point out, c_a may in general be a tensor, but we restrict attention to the isotropic case. The second term in (1) is the Forchheimer term and the effect of this upon convection is analysed by Rees [32, 33]. In this paper we neglect the Forchheimer term as we are not considering high flow rates, but we do retain a term like the c_a one in (1), but only for the macro velocity in a bidisperse porous medium.

For a single porosity medium the effect of the c_a term upon the critical Rayleigh number for thermal convection has been studied by several writers. Vadasz [34] discovered this term has a striking effect on rotating porous convection. Other interesting studies include Altawallbeh et al. [35], Bhaduria & Srivastava [36], Deepika [19], Falsaperla et al. [37], Harfash & Challoob [38], Straughan [39, 40, 41]. As far as we are aware, this is the first study of inertia effects via an acceleration coefficient, on convection in a bidisperse porous medium.

The theory of thermal convection in a bidisperse porous medium was presented in fundamental work by Nield & Kuznetsov [42, 1, 43, 44, 45] and by Nield [46]. Falsaperla et al. [47] and Gentile & Straughan [48] continued the work of Nield & Kuznetsov but they restrict attention to a single temperature field which still has many real applications. Other recent papers dealing with the single temperature field model are by Franchi et al. [49], Gentile & Straughan [50], and Straughan [51, 30].

2
The aim of this paper is to generalize the work of Straughan [30] on double diffusive bidispersive convection but consider the effect of a non-zero inertia term in the macro fluid velocity equation. We restrict attention to the more mathematically difficult but contemporarily more physically interesting case where the layer is heated from below and simultaneously salted from below. In this situation the heating wishes to destabilize the layer and initiate convective overturning whereas the salt gradient acts in the opposite manner and is stabilizing. The inertia term will be seen to have a very strong effect on the convection thresholds and we believe this is a justification for the analysis.

2 Equations

The governing equations change very little from those given by Straughan [30]. Indeed, the only difference is in the inclusion of an acceleration term in equation (1) of Straughan [30]. Thus, equation (1) of Straughan [30] is replaced by

\[
\rho_0 c_a \frac{\partial U_f^I}{\partial t} = -\frac{\mu}{K_f} U_f^I - p_f^I - \zeta(U_f^I - U_p^I) + g\rho_0 \alpha k T - \alpha_C \rho_0 C, \tag{2}
\]

where \(\rho_0\) is the fluid density, \(c_a\) is the acceleration coefficient, \(U_f^I\) and \(U_p^I\) are the fluid velocities in the macro and micropores, \(K_f\) is the permeability in the macro phase, \(\zeta\) is the coefficient of momentum transfer between the macro and micro phases as defined by Nield & Kuznetsov [1], \(g\) is gravity, \(\alpha\) thermal expansion coefficient, \(T\) temperature, \(C\) salt concentration and \(\alpha_C\) is the coefficient in the equation of state for the basic density \(\rho\), namely

\[
\rho = \rho_0 \left[1 - \alpha(T - T_0) + \alpha C (C - C_0) \right].
\]

All other notation and equations are exactly as in Straughan [30], section 2.

We are interested in investigating thermosolutal convection in a plane layer of bidispersive material. As in Straughan [30], the saturated porous material occupies the horizontal layer \(0 < z < d\), \(\{(x, y) \in \mathbb{R}^2\}\), and the equations are (2) of this paper coupled with equations (1)_{2,3,4}, (2) and (5) of Straughan [30]. The basic solution and non-dimensionalization is exactly the same as in section 3 of Straughan [30]. The perturbation equations may be found as equations (12) of Straughan [30] allowing for the addition of the \(\rho_0 c_a\) term in (2) and omitting the Soret effect. For completeness, we record the non-dimensional perturbation equations here, namely,

\[
\begin{align*}
-J u_{i,t}^I - u_i^I - \xi(u_i^I - u_i^P) - \pi_{i,i}^I + R\theta k_i - C\gamma k_i &= 0, \\
u_{i,t}^I &= 0, \\
-K^* u_{i,t}^P - \xi(u_i^P - u_i^I) - \pi_{i,i}^P + R\theta k_i - C\gamma k_i &= 0, \\
u_{i,t}^P &= 0, \\
\theta_i + (u_i^I + u_i^P)\theta_{i,i} &= w^I + w^P + \Delta \theta, \\
\epsilon_1 Le \gamma_i + ALe(u_i^I + u_i^P)\gamma_{i,i} &= (w^I + w^P) + \Delta \gamma,
\end{align*}
\]
where J is a non-dimensional form of the acceleration coefficient.

Equations (3) hold in the domain $\{(x, y) \in \mathbb{R}^2 \times \{z \in (0, 1)\} \times \{t > 0\}\}$ and with $u^f = (u^f, v^f, w^f)$, $u^p = (u^p, v^p, w^p)$. The boundary conditions become

$$w^f = 0, \ u^p = 0, \ \theta = 0, \ \gamma = 0, \ \ z = 0, \ d, \quad (4)$$

and the perturbation solution satisfies a plane tiling planform in the horizontal directions with wavenumber a. In particular, we observe that R is the Rayleigh number and C is the concentration Rayleigh number given by equations (11) of Straughan [30].

3 Instability

To analyse instability for (3) and (4) we take curl curl of (3) and retain the w^f and w^p components of the results. Equations (3) and (3) are linearized and then a time dependence like $e^{\sigma t}$ is requested. This results in having to solve the eigenvalue problem for the boundary conditions (4) together with the equations

$$(1 + \xi + J_\sigma)\Delta w^f - \xi\Delta w^p - R\Delta^* \theta + C\Delta^* \gamma = 0,$$

$$(K^r + \xi)\Delta w^p - \xi\Delta w^f - R\Delta^* \theta + C\Delta^* \gamma = 0,$$

$$\sigma \theta = w^f + w^p + \Delta \theta,$$

$$\epsilon_1 \omega \sigma \gamma = w^f + w^p + \Delta \gamma,$$

where $\Delta^* = \partial^2/\partial x^2 + \partial^2/\partial y^2$ is the horizontal Laplacian.

To solve (5) we follow the method of Chandrasekhar [52] and employ a normal mode representation and set $w^f = W^f(z,f(x,y))$ with similar forms for w^p, θ and γ. This results in solving the determinant equation

$$\begin{vmatrix}
-(1 + \xi + J_\sigma)\Lambda & \xi \Lambda & Ra^2 & -Ca^2 \\
\xi \Lambda & -(K^r + \xi)\Lambda & Ra^2 & -Ca^2 \\
1 & 1 & -(\Lambda + \sigma) & 0 \\
1 & 1 & 0 & -(\Lambda + \omega \sigma)
\end{vmatrix} = 0 \quad (6)$$

where $\Lambda = n^2\pi^2 + a^2$ and $\omega = \epsilon_1 \omega e$. The number n arises from the representation of $W^f = \hat{W}^f \sin n\pi z$ and a is the wavenumber.

Upon expansion this determinant yields the equation

$$Ra^2 [A A + L J \sigma^2 + \sigma \{ L A + J A \}] + \Lambda [A^2 B + \sigma \{ A^2 J D + \Lambda (1 + \omega) B \} + \sigma^2 \{ \omega B + \Lambda (1 + \omega) J D \} + \omega J D \sigma^3],$$

where we have put

$$A = 1 + 4\xi + K^r, \quad B = K^r + \xi K^r + \xi, \quad D = K^r + \xi.$$
The stationary convection boundary, $\sigma = 0$, follows quickly from (7) which in that case becomes

$$R = C + \frac{\Lambda^2 B}{a^2 A}$$

Upon minimizing in n^2 and then in a^2 one finds the critical wavenumber is $a^2 = \pi^2$ and then the stationary convection curve is

$$R = C + 4\pi^2 \frac{B}{A}$$

(8)

To find the oscillatory convection boundary we put $\sigma = i\sigma_1$, $\sigma_1 \in \mathbb{R}$, cf. Chandrasekhar [52]. Then, take the real and imaginary parts of (7) to obtain the following two equations

$$Ra^2[\Lambda A - \sigma_1^2 J\mathcal{L}] = Ca^2[\Lambda A - J\sigma_1^2] + B\Lambda^3 - \sigma_1^2 A[\mathcal{L}B + J\Lambda(1 + \mathcal{L})D],$$

and

$$Ra^2[\mathcal{J}A + \mathcal{L}A] = Ca^2[\mathcal{J}A + A] + (1 + \mathcal{L})\Lambda^2 B + J\Lambda^3 D - \sigma_1^2 J\mathcal{L}\Lambda D.$$

(9)

These equations then yield σ_1^2 as

$$\sigma_1^2 = -RE + F,$$

(11)

where

$$E = a^2 \left(\frac{1}{\mathcal{L}D} + \frac{A}{\mathcal{J}DA} \right)$$

and

$$F = Ca^2 \left(\frac{1}{\mathcal{L}D} + \frac{A}{\mathcal{J}DA} \right) + \frac{(1 + \mathcal{L})B\Lambda}{\mathcal{J}\mathcal{L}D} + \frac{\Lambda^2}{\mathcal{L}}.$$

Expression (11) may then be employed in (9) to yield the following form for R,

$$XR^2 - YR + Z = 0,$$

(12)

where

$$X = a^2 J\mathcal{L}E,$$

$$Y = Ca^2 J\mathcal{E} + J\mathcal{L}Fa^2 + EH - a^2 A\Lambda,$$

$$Z = HF + Ca^2 J\mathcal{F} - B\Lambda^3 - Ca^2 A\Lambda.$$

One may show $Y > 0$ and then R is found as

$$R = \frac{Y - \sqrt{Y^2 - 4XZ}}{2X}.$$

(13)

The critical value of R is found from (13) numerically by minimizing in a^2 and n^2. We check numerically that $Y^2 > 4XZ$, and this is so for all values presented here. For all the computations displayed here we found that $n = 1$ yields the minimum. Once the critical wavenumber is found from (13), i.e. that value which yields a minimum for R, equation (11) leads to the equivalent value for σ_1^2.

5
4 Numerical results and conclusions

In this section we report on numerical solutions for the critical Rayleigh number and wavenumber thresholds, based on (8) for the stationary convection case, and by minimizing (13) in \(\sigma^2 \) for the oscillatory convection scenario.

We focus on the case where the saturating fluid is water and the porous medium is sand. We take the macro porosity \(\phi \) to have value 0.3 whereas the micro porosity \(\epsilon \) has value 0.2. The value of \(L = \epsilon L_e \) is 55.924, cf. Straughan [30].

The parameters \(\xi \) and \(K_r \) are varied and we report on cases where \(\xi = 0 \) and 0.5, and \(K_r = 1.5 \) and 5.

Figure 1 shows a typical instability threshold curve, in this case \(\xi = 0.1, K_r = 1.5 \) and the inertia coefficient \(J = 0.8 \). For \(0 \leq C \leq 4.22 \) we see that instability arises by stationary convection, represented by the straight line in figure 1 emanating from the \(C = 0 \) value where \(R \) is less than 24. At the transition point \(C^* = 4.22 \) the mechanism of instability switches to oscillatory convection for \(C > C^* \) and the curve which branches from \((R,C) = (28.04,4.22)\) to the right represents the oscillatory curve threshold. In our graphs oscillatory curves appear to be straight lines although they are not, a fact pointed out in the single porosity case by Straughan [28]. The point is they arise from (13) which does not lead to a straight line. For all of the values of \(\xi, K_r \) and \(J \) we tried, figure 1 displays the typical shape, although the quantitative values of \(R \) and \(C \) change depending on \(\xi, K_r \) and \(J \).

Figure 2 displays the stationary convection and oscillatory curves when \(J = 0.1, 0.3, 0.5, 0.8 \) and 1.0, with \(\xi = 0.1 \) and \(K_r = 1.5 \). The transition values from stationary to oscillatory convection are given in table 1, for \(J = 0.1, 0.3, 0.5, 0.8 \) and 1.0. The corresponding critical wavenumber values are likewise displayed in table 1. In addition, the values of \(\sigma^2_1 \) are given in table 1, where \(R \) denotes the oscillatory convection value whereas \(R_{stat} \) denotes the stationary convection value. It is noteworthy that as \(J \) increases \(\sigma^2_1 \) is not zero at the transition (the negative value for \(J = 0.1 \) is purely indicative of stationary convection and arises from equation (11)). Table 4 confirms this phenomenon. The last effect was also observed in the single porosity case by Straughan [28].

The analogous curves to those of figure 2 are given in figures 3, 4 and 5 when \(K_r = 5, \xi = 0.1, K_r = 1.5, \xi = 0.5 \), and \(K_r = 5, \xi = 0.5 \), respectively. In each case the inertia coefficient takes the values \(J = 0.1, 0.3, 0.5, 0.8 \) and 1.0. The corresponding values at the transition from stationary to oscillatory convection are given in tables 2 - 4.

What is evident from figures 2 - 5 is that is we fix \(K_r \) and vary \(\xi \) then the critical Rayleigh numbers change by a relatively small amount. However, when we fix \(\xi \) and vary \(K_r \) then the variation in critical Rayleigh numbers is greater. In all cases increasing the inertia coefficient leads to increasing critical Rayleigh numbers and increasing transition values. This, for insulation, where no convection is desired to decrease heat transfer, one requires as small an inertia as possible. On the other hand, if one desires efficient heat transfer, then a greater inertia coefficient is preferable. This highlights the need for accurate
measurements of the quantities involved in the non-dimensional numbers ξ, K_r and J.

We include one graph of the critical wavenumber variation, in figure 6, for $\xi = 0.5$ and $K_r = 1.5$, corresponding to figure 4. The variation in J is not huge, but we see that oscillatory convection lowers the wave number as C and J increase. This means that the convection cell aspect ratio decreases and the cells become wider. For each value of J the stationary convection wavenumber is constant with value $a^2 = \pi^2 \approx 9.8696$. For a particular value of J when C increases to the transition value C^* the wavenumber jumps from π^2 to the value shown on the oscillatory convection curves. In each case the cell becomes wider since a^2 decreases discontinuously. The transition values are $J = 0.1, R = 24.996, C^* = 0.87, a^2 = 9.7032$; $J = 0.3, R = 25.856, C^* = 1.73, a^2 = 9.4117$; $J = 0.5, R = 26.710, C^* = 2.58, a^2 = 9.1659$; $J = 0.8, R = 27.966, C^* = 3.84, a^2 = 8.8603$; $J = 1.0, R = 28.796, C^* = 4.67, a^2 = 8.6885$.

A referee raised the issue of producing graphs for the variation of R in ξ and in K_r. This is an interesting question but there are four parameters, ξ, K_r, J and C and the graphs depend on all four.

When the convection is stationary then from (8) we find $\partial R/\partial K_r = 4\pi^2(1 + 2\xi)^2/A^2 > 0$ and $\partial R/\partial \xi = 4\pi^2(1 - K_r)^2/A^2$, and so R increases with increasing K_r and ξ, keeping the other parameters fixed. For example, in figures 2 and 3, if $C = 0.5$ we see stationary convection for all $J = 0.1, 0.3, 0.5, 0.8$ and 1.0 with R increasing in K_r. When $C = 3.5$ there is a transition from stationary to oscillatory convection for $J = 0.1, 0.3, 0.5$, as C increases for $K_r = 1.5$ and likewise for $J = 0.1, 0.3$, for $K_r = 5.0$. When $C = 10$ all curves exhibit the stationary to oscillatory transition for $J = 0.1, 0.3, 0.5, 0.8$ and 1.0 and for $K_r = 1.5$ and 5. However, R is always increasing in K_r. The increase in ξ is less prominent. We refrain from producing graphical output for K_r and ξ varying since $K_r = K^f/K^p$ and $\xi = \zeta K^f/\mu$. Experimental values for the micro permeability, K^p, and the coefficient of momentum transfer between the macro and micro phases, ζ, do not appear to be readily available. There is thus a need for such values for real materials and if available graphical output could be readily produced.

In this article we concentrate on the case where the layer is heated from below and salted from below. It is worth pointing out that if one considers the analogous problem with inertia when the layer is heated from below and salted from above then one may show that the linear instability boundary is identifiable to the global nonlinear stability boundary. Thus, in that case one achieves an optimal result by finding linear instability thresholds.

We have only considered the case of flow in the macro pores and micro pores when the porous material is of Darcy type. The analogous class of problem when one employs a Brinkman theory may lead to very different results. Straughan [53] has shown in the case of a single porosity material that completely different qualitative and quantitative behaviour may be found in the same problem depending on whether one employs Darcy or Brinkman theory. Furthermore, we only employ Fourier’s law relating the heat flux to the temperature gradient. If one were to employ a hyperbolic law such as one of Cattaneo-Christov type.
then even for Darcy theory the behaviour may change significantly, as observed by Straughan [54] when dealing with a single porosity model.

Acknowledgments.

I am indebted to three anonymous referees whose incisive comments have led to improvements in the original manuscript.

References

<table>
<thead>
<tr>
<th>J</th>
<th>R</th>
<th>R_{stat}</th>
<th>a^2</th>
<th>σ_1^2</th>
<th>C^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>24.742036</td>
<td>24.733183</td>
<td>9.6833</td>
<td>-0.90545$\times10^{-3}$</td>
<td>0.910</td>
</tr>
<tr>
<td>0.3</td>
<td>25.700516</td>
<td>25.703183</td>
<td>9.3647</td>
<td>0.12537$\times10^{-2}$</td>
<td>1.880</td>
</tr>
<tr>
<td>0.5</td>
<td>26.645475</td>
<td>26.643183</td>
<td>9.1029</td>
<td>0.16002$\times10^{-2}$</td>
<td>2.820</td>
</tr>
<tr>
<td>0.8</td>
<td>28.045320</td>
<td>28.043183</td>
<td>8.7857</td>
<td>0.23282$\times10^{-2}$</td>
<td>4.230</td>
</tr>
</tbody>
</table>

Table 1: Critical values of R, a^2 and σ_1^2 for quoted values J, at the transition from stationary to oscillatory convection. C^* is the corresponding value of C at the transition. Values of R_{stat} the stationary convection value are also given. Here, $K_r = 1.5, \xi = 0.1$.

<table>
<thead>
<tr>
<th>J</th>
<th>R</th>
<th>R_{stat}</th>
<th>a^2</th>
<th>σ_1^2</th>
<th>C^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>36.103225</td>
<td>36.093615</td>
<td>9.6255</td>
<td>-0.33138$\times10^{-3}$</td>
<td>1.550</td>
</tr>
<tr>
<td>0.3</td>
<td>37.934585</td>
<td>37.933615</td>
<td>9.2183</td>
<td>0.13893$\times10^{-2}$</td>
<td>3.390</td>
</tr>
<tr>
<td>0.5</td>
<td>39.734085</td>
<td>39.733615</td>
<td>8.8919</td>
<td>0.21210$\times10^{-2}$</td>
<td>5.190</td>
</tr>
<tr>
<td>0.8</td>
<td>42.388781</td>
<td>42.383615</td>
<td>8.5048</td>
<td>0.27390$\times10^{-2}$</td>
<td>7.840</td>
</tr>
<tr>
<td>1.0</td>
<td>44.136098</td>
<td>44.133615</td>
<td>8.2951</td>
<td>0.30816$\times10^{-2}$</td>
<td>9.590</td>
</tr>
</tbody>
</table>

Table 2: Critical values of R, a^2 and σ_1^2 for quoted values J, at the transition from stationary to oscillatory convection. C^* is the corresponding value of C at the transition. Values of R_{stat} the stationary convection value are also given. Here, $K_r = 5.0, \xi = 0.1$.

12
Table 3: Critical values of R, a^2 and σ_1^2 for quoted values J, at the transition from stationary to oscillatory convection. C^* is the corresponding value of C at the transition. Values of R_{stat} the stationary convection value are also given. Here, $K_r = 1.5, \xi = 0.5$.

<table>
<thead>
<tr>
<th>J</th>
<th>R</th>
<th>R_{stat}</th>
<th>a^2</th>
<th>σ_1^2</th>
<th>C^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>25.000933</td>
<td>24.995700</td>
<td>9.7032</td>
<td>-0.49568x10^{-3}</td>
<td>0.870</td>
</tr>
<tr>
<td>0.1</td>
<td>25.001063</td>
<td>25.005700</td>
<td>9.7032</td>
<td>0.90653x10^{-3}</td>
<td>0.880</td>
</tr>
<tr>
<td>0.3</td>
<td>25.863145</td>
<td>25.865700</td>
<td>9.4117</td>
<td>0.11399x10^{-2}</td>
<td>2.590</td>
</tr>
<tr>
<td>0.3</td>
<td>26.713806</td>
<td>26.715700</td>
<td>9.1659</td>
<td>0.25419x10^{-2}</td>
<td>4.670</td>
</tr>
<tr>
<td>0.5</td>
<td>27.974238</td>
<td>27.975700</td>
<td>8.8603</td>
<td>0.22994x10^{-2}</td>
<td>3.840</td>
</tr>
<tr>
<td>0.8</td>
<td>28.804743</td>
<td>28.805700</td>
<td>8.6885</td>
<td>0.19555x10^{-2}</td>
<td>6.910</td>
</tr>
<tr>
<td>1.0</td>
<td>28.805382</td>
<td>28.805700</td>
<td>8.6883</td>
<td>0.16242x10^{-2}</td>
<td>4.680</td>
</tr>
</tbody>
</table>

Table 4: Critical values of R, a^2 and σ_1^2 for quoted values J, at the transition from stationary to oscillatory convection. C^* is the corresponding value of C at the transition. Values of R_{stat} the stationary convection value are also given. Here, $K_r = 5.0, \xi = 0.5$.

<table>
<thead>
<tr>
<th>J</th>
<th>R</th>
<th>R_{stat}</th>
<th>a^2</th>
<th>σ_1^2</th>
<th>C^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>40.991481</td>
<td>40.988418</td>
<td>9.6848</td>
<td>0.37918x10^{-2}</td>
<td>1.510</td>
</tr>
<tr>
<td>0.1</td>
<td>40.991591</td>
<td>40.998418</td>
<td>9.6848</td>
<td>0.84783x10^{-2}</td>
<td>1.520</td>
</tr>
<tr>
<td>0.3</td>
<td>42.560481</td>
<td>42.598418</td>
<td>9.3627</td>
<td>0.25685x10^{-2}</td>
<td>3.120</td>
</tr>
<tr>
<td>0.3</td>
<td>42.560623</td>
<td>42.608418</td>
<td>9.3627</td>
<td>0.29558x10^{-2}</td>
<td>3.130</td>
</tr>
<tr>
<td>0.5</td>
<td>44.105847</td>
<td>44.098418</td>
<td>9.0924</td>
<td>0.15190x10^{-2}</td>
<td>4.620</td>
</tr>
<tr>
<td>0.5</td>
<td>44.106053</td>
<td>44.108418</td>
<td>9.0924</td>
<td>0.17712x10^{-2}</td>
<td>4.630</td>
</tr>
<tr>
<td>0.8</td>
<td>46.391929</td>
<td>46.388418</td>
<td>8.7576</td>
<td>0.23303x10^{-2}</td>
<td>6.910</td>
</tr>
<tr>
<td>0.8</td>
<td>46.392238</td>
<td>46.398418</td>
<td>8.7576</td>
<td>0.24943x10^{-2}</td>
<td>6.920</td>
</tr>
<tr>
<td>1.0</td>
<td>47.898789</td>
<td>47.888418</td>
<td>8.5700</td>
<td>0.25830x10^{-2}</td>
<td>8.410</td>
</tr>
<tr>
<td>1.0</td>
<td>47.898276</td>
<td>47.898418</td>
<td>8.5699</td>
<td>0.27159x10^{-2}</td>
<td>8.420</td>
</tr>
</tbody>
</table>
Figure 1: Critical Rayleigh number R against the salt Rayleigh number C. The slanted line beginning with R just below 24 is the stationary convection curve. The other intersecting curve shows where oscillatory convection occurs. Instability occurs for values above the displayed lines. The saturating fluid is water, the porous material is sand, $\phi = 0.3$, $\epsilon = 0.2$ and $L = \epsilon_1 L e = 55.924$.
Figure 2: Critical Rayleigh number R against the salt Rayleigh number C. The slanted line beginning with R just below 24 is the stationary convection curve. The other intersecting curves show where oscillatory convection occurs. The oscillatory convection curves are for $J = 0.1$, the lowest, then $J = 0.3, 0.5, 0.8, 1.0$, with R increasing as J does.
Figure 3: Critical Rayleigh number R against the salt Rayleigh number C. The slanted line beginning with R just above 34 is the stationary convection curve. The other intersecting curves show where oscillatory convection occurs. The oscillatory convection curves are for $J = 0.1$, the lowest, then $J = 0.3, 0.5, 0.8, 1.0$, with R increasing as J does.
Figure 4: Critical Rayleigh number R against the salt Rayleigh number C. The slanted line beginning with R just above 24 is the stationary convection curve. The other intersecting curves show where oscillatory convection occurs. The oscillatory convection curves are for $J = 0.1$, the lowest, then $J = 0.3, 0.5, 0.8, 1.0$, with R increasing as J does.
Figure 5: Critical Rayleigh number R against the salt Rayleigh number C. The slanted line beginning with R just above 39 is the stationary convection curve. The other intersecting curves show where oscillatory convection occurs. The oscillatory convection curves are for $J = 0.1$, the lowest, then $J = 0.3, 0.5, 0.8, 1.0$, with R increasing as J does.
Figure 6: Critical wavenumber squared a^2 against the salt Rayleigh number C. The horizontal line $a^2 = \pi^2 \approx 9.8696$ is the stationary convection curve. The other curves show where oscillatory convection occurs. The oscillatory convection curves are for $J = 1.0$, the lowest, then $J = 0.8, 0.5, 0.3, 0.1$, with a^2 decreasing as C increases. The oscillatory curves jump from the stationary curve at the transition values $C = 0.87, J = 0.1, a^2 = 9.7032$; $C = 1.73, J = 0.3, a^2 = 9.4117$; $C = 2.58, J = 0.5, a^2 = 9.1659$; $C = 3.84, J = 0.8, a^2 = 8.8603$; $C = 4.67, J = 1.0, a^2 = 8.6885$. For completeness the transition Rayleigh number values are (to 3 decimal places) $R = 24.996, J = 0.1$; $R = 25.856, J = 0.3$; $R = 26.710, J = 0.5$; $R = 27.966, J = 0.8$; $R = 28.796, J = 1.0$.

\[
\begin{align*}
C &< 0.87, & J = 0.1, & a^2 = 9.7032 \\
0.87 < C < 1.73, & J = 0.3, & a^2 = 9.4117 \\
1.73 < C < 2.58, & J = 0.5, & a^2 = 9.1659 \\
2.58 < C < 3.84, & J = 0.8, & a^2 = 8.8603 \\
3.84 < C < 4.67, & J = 1.0, & a^2 = 8.6885 \\
C > 4.67, & J = 1.0, & a^2 \text{ decreasing}
\end{align*} \]