We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

On decoupled and fully-coupled methods for blade forced response prediction.

Moffatt, S. and He, L. (2005) 'On decoupled and fully-coupled methods for blade forced response prediction.', Journal of fluids and structures., 20 (2). pp. 217-234.


Two highly efficient fully-coupled methods of predicting the resonant forced response of turbomachinery blades have been developed with the intention of increased computational efficiency over a decoupled method. The flow and structural equations are solved simultaneously, based on the frequency-domain nonlinear harmonic method and the modal reduction technique. By combining the aerodynamic forcing and damping calculations into a single analysis, the coupled solution at a single excitation frequency is approximately half that of the decoupled method. Significant flow–structure coupling effects were discovered, leading to a study into the impact of frequency shift on the fully-coupled solution. A case study on the NASA Rotor 67 transonic aero fan rotor shows a significant reduction in vibration amplitude for the fully-coupled solution due to the resonant frequency shift, caused by the aerodynamic added mass effect. Prompting the development of a novel resonance-tracking algorithm to solve the additional degree-of-freedom in resonant frequency, the increase in computational efficiency in the fully-coupled method is lost due to the need for multiple solutions. A study into the added mass effect and the implications on the coupled solution is undertaken and an evaluation is made between the use of decoupled and fully-coupled forced response systems. It is shown that the decoupled method can accurately predict the resonant vibration level from a single calculation at the natural frequency and is insensitive to frequency shift for lightly damped cases.

Item Type:Article
Keywords:Turbomachinery, Flows.
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:16 Feb 2007
Last Modified:08 Apr 2009 16:21

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library