Skip to main content

Research Repository

Advanced Search

The Role of Crustal Buoyancy in the Generation and Emplacement of Magmatism During Continental Collision

Schliffke, Nicholas; Hunen, Jeroen; Magni, Valentina; Allen, Mark B.

The Role of Crustal Buoyancy in the Generation and Emplacement of Magmatism During Continental Collision Thumbnail


Authors

Nicholas Schliffke

Jeroen Hunen

Valentina Magni



Contributors

Abstract

During continental collision, considerable amounts of buoyant continental crust subduct to depth and subsequently exhume. Whether various exhumation paths contribute to contrasting styles of magmatism across modern collision zones is unclear. Here we present 2D thermomechanical models of continental collision combined with petrological databases to investigate the effect of the main contrasting buoyancy forces, in the form of continental crustal buoyancy versus oceanic slab age (i.e., its thickness). We specifically focus on the consequences for crustal exhumation mechanisms and magmatism. Results indicate that it is mainly crustal density that determines the degree of steepening of the subducting continent and separates the models' parameter space into two regimes. In the first regime, high buoyancy values (∆ρ > 500 kg/m3) steepen the slab most rapidly (to 45–58°), leading to opening of a gap in the subduction channel through which the subducted crust exhumes (“subduction channel crustal exhumation”). A shift to a second regime (“underplating”) occurs when the density contrast is reduced by 50 kg/m3. In this scenario, the slab steepens less (to 37–50°), forcing subducted crust to be placed below the overriding plate. Importantly, the magmatism changes in the two cases: Crustal exhumation through the subduction channel is mainly accompanied by a narrow band of mantle melts, while underplating leads to widespread melting of mixed sources. Finally, we suggest that the amount (or density) of subducted continental crust, and the resulting buoyancy forces, could contribute to contrasting collision styles and magmatism in the Alps and Himalayas/Tibet.

Citation

Schliffke, N., Hunen, J., Magni, V., & Allen, M. B. (2019). The Role of Crustal Buoyancy in the Generation and Emplacement of Magmatism During Continental Collision. Geochemistry, Geophysics, Geosystems, 20(11), 4693-4709. https://doi.org/10.1029/2019gc008590

Journal Article Type Article
Acceptance Date Oct 18, 2019
Online Publication Date Nov 5, 2019
Publication Date Nov 30, 2019
Deposit Date Nov 13, 2019
Publicly Available Date Nov 13, 2019
Journal Geochemistry, Geophysics, Geosystems
Electronic ISSN 1525-2027
Publisher American Geophysical Union
Peer Reviewed Peer Reviewed
Volume 20
Issue 11
Pages 4693-4709
DOI https://doi.org/10.1029/2019gc008590

Files

Published Journal Article (Advance online version) (22.4 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Advance online version © 2019. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.






You might also like



Downloadable Citations