Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


Durham Research Online
You are in:

Topological complexity of motion planning.

Farber, M. (2003) 'Topological complexity of motion planning.', Discrete & computational geometry., 29 (2). pp. 211-221.

Abstract

In this paper we study a notion of topological complexity TC(X) for the motion planning problem. TC(X) is a number which measures discontinuity of the process of motion planning in the configuration space X . More precisely, TC(X) is the minimal number k such that there are k different "motion planning rules," each defined on an open subset of X2 X , so that each rule is continuous in the source and target configurations. We use methods of algebraic topology (the Lusternik--Schnirelman theory) to study the topological complexity TC(X) . We give an upper bound for TC(X) (in terms of the dimension of the configuration space X ) and also a lower bound (in terms of the structure of the cohomology algebra of X ). We explicitly compute the topological complexity of motion planning for a number of configuration spaces: spheres, two-dimensional surfaces, products of spheres. In particular, we completely calculate the topological complexity of the problem of motion planning for a robot arm in the absence of obstacles.

Item Type:Article
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1007/s00454-002-0760-9
Record Created:26 Apr 2007
Last Modified:08 Apr 2009 16:30

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library