Skip to main content

Research Repository

Advanced Search

The stochastic enrichment of Population II stars

Welsh, Louise; Cooke, Ryan; Fumagalli, Michele

The stochastic enrichment of Population II stars Thumbnail


Authors

Louise Welsh



Abstract

We investigate the intrinsic scatter in the chemical abundances of a sample of metal-poor ([Fe/H] < −2.5) Milky Way halo stars. We draw our sample from four historic surveys and focus our attention on the stellar Mg, Ca, Ni, and Fe abundances. Using these elements, we investigate the chemical enrichment of these metal-poor stars using a model of stochastic chemical enrichment. Assuming that these stars have been enriched by the first generation of massive metal-free stars, we consider the mass distribution of the enriching population alongside the stellar mixing and explosion energy of their supernovae. For our choice of stellar yields, our model suggests that the most metal-poor stars were enriched, on average, by N^⋆=5+13−3 (1σ) Population III stars. This is comparable to the number of enriching stars inferred for the most metal-poor DLAs. Our analysis therefore suggests that some of the lowest mass structures at z ∼ 3 contain the chemical products from < 13(2σ) Population III enriched minihaloes. The inferred IMF is consistent with that of a Salpeter distribution and there is a preference towards ejecta from minimally mixed hypernovae. However, the estimated enrichment model is sensitive to small changes in the stellar sample. An offset of ∼ 0.1 dex in the [Mg/Ca] abundance is shown to be sensitive to the inferred number of enriching stars. We suggest that this method has the potential to constrain the multiplicity of the first generation of stars, but this will require: (1) a stellar sample whose systematic errors are well understood; and, (2) documented uncertainties associated with nucleosynthetic yields.

Citation

Welsh, L., Cooke, R., & Fumagalli, M. (2021). The stochastic enrichment of Population II stars. Monthly Notices of the Royal Astronomical Society, 500(4), 5214-5228. https://doi.org/10.1093/mnras/staa3342

Journal Article Type Article
Acceptance Date Oct 15, 2020
Online Publication Date Oct 28, 2020
Publication Date 2021-02
Deposit Date Jun 29, 2021
Publicly Available Date Jun 29, 2021
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 500
Issue 4
Pages 5214-5228
DOI https://doi.org/10.1093/mnras/staa3342

Files

Published Journal Article (1.7 Mb)
PDF

Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.





You might also like



Downloadable Citations