Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Molecular cloud regulated star formation in galaxies.

Booth, C. M. and Theuns, T. and Okamoto, T. (2007) 'Molecular cloud regulated star formation in galaxies.', Monthly notices of the Royal Astronomical Society., 376 (4). pp. 1588-1610.

Abstract

We describe a numerical implementation of star formation in disc galaxies, in which the conversion of cooling gas to stars in the multiphase interstellar medium is governed by the rate at which molecular clouds are formed and destroyed. In the model, clouds form from thermally unstable ambient gas and get destroyed by feedback from massive stars and thermal conduction. Feedback in the ambient phase cycles gas into a hot galactic fountain or wind. We model the ambient gas hydrodynamically using smoothed particle hydrodynamics. However, we cannot resolve the Jeans mass in the cold and dense molecular gas and, therefore, represent the cloud phase with ballistic particles that coagulate when colliding. We show that this naturally produces a multiphase medium with cold clouds, a warm disc, hot supernova bubbles and a hot, tenuous halo. Our implementation of this model is based on the gadget N-body code. We illustrate the model by evolving an isolated Milky Way-like galaxy and study the properties of a disc formed in a rotating spherical collapse. Many observed properties of disc galaxies are reproduced well, including the molecular cloud mass spectrum, the molecular fraction as a function of radius, the Schmidt law, the stellar density profile and the appearance of a galactic fountain.

Item Type:Article
Full text:PDF - Other (828Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1111/j.1365-2966.2007.11570.x
Publisher statement:The definitive version is available at www.blackwell-synergy.com
Record Created:29 Apr 2008
Last Modified:28 Jul 2014 20:43

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library