Skip to main content

Research Repository

Advanced Search

Early structure in Lambda CDM

Gao, L.; White, S.D.M.; Jenkins, A.R.; Frenk, C.S.; Springel, V.

Early structure in Lambda CDM Thumbnail


Authors

L. Gao

S.D.M. White

V. Springel



Abstract

We use a novel technique to simulate the growth of one of the most massive progenitors of a supercluster region from redshift z 80, when its mass was about 10 M, until the present day. Our nested sequence of N-body resimulations allows us to study in detail the structure both of the dark matter object itself and of its environment. Our effective resolution is optimal at redshifts of 49, 29, 12, 5 and 0 when the dominant object has mass 1.2 × 105, 5 × 107, 2 × 1010, 3 × 1012 and 8 × 1014 h1 M, respectively, and contains 106 simulation particles within its virial radius. Extended Press–Schechter (EPS) theory correctly predicts both this rapid growth and the substantial overabundance of massive haloes we find at early times in regions surrounding the dominant object. Although the large-scale structure in these regions differs dramatically from a scaled version of its present-day counterpart, the internal structure of the dominant object is remarkably similar. Molecular hydrogen cooling could start as early as z 49 in this object, while cooling by atomic hydrogen becomes effective at z 39. If the first stars formed in haloes with virial temperature 2000 K, their comoving abundance at z= 49 should be similar to that of dwarf galaxies today, while their comoving correlation length should be 2.5 h1 Mpc.

Citation

Gao, L., White, S., Jenkins, A., Frenk, C., & Springel, V. (2005). Early structure in Lambda CDM. Monthly Notices of the Royal Astronomical Society, 363(2), 379-392. https://doi.org/10.1111/j.1365-2966.2005.09509.x

Journal Article Type Article
Publication Date Oct 1, 2005
Deposit Date Jul 16, 2007
Publicly Available Date Aug 11, 2014
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 363
Issue 2
Pages 379-392
DOI https://doi.org/10.1111/j.1365-2966.2005.09509.x
Keywords Methods, N-body simulations, Numerical, Cosmological, Theory, Galaxies, Haloes, Dark matter, Early universe, Galaxy formation, Hierarchical models, Density profiles, Mass function, Inner Structure.

Files

Published Journal Article (835 Kb)
PDF

Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society © 2005 The Authors Published on behalf of Royal Astronomical Society. All rights reserved.







You might also like



Downloadable Citations