We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Helium isotopic evidence for episodic mantle melting and crustal growth.

Parman, S. W. (2007) 'Helium isotopic evidence for episodic mantle melting and crustal growth.', Nature., 446 (7138). pp. 900-903.


The timing of formation of the Earth’s continental crust is the subject of a long-standing debate, with models ranging from early formation with little subsequent growth, to pulsed growth, to steadily increasing growth. But most models do agree that the continental crust was extracted from the mantle by partial melting. If so, such crustal extraction should have left a chemical fingerprint in the isotopic composition of the mantle. The subduction of oceanic crust and subsequent convective mixing, however, seems to have largely erased this record in most mantle isotopic systems (for example, strontium, neodymium and lead). In contrast, helium is not recycled into the mantle because it is volatile and degasses from erupted oceanic basalts. Therefore helium isotopes may potentially preserve a clearer record of mantle depletion than recycled isotopes. Here I show that the spectrum of 4He/3He ratios in ocean island basalts appears to preserve the mantle’s depletion history, correlating closely with the ages of proposed continental growth pulses. The correlation independently predicts both the dominant 4He/3He peak found in modern mid-ocean-ridge basalts, as well as estimates of the initial 4He/3He ratio of the Earth. The correspondence between the ages of mantle depletion events and pulses of crustal production implies that the formation of the continental crust was indeed episodic and punctuated by large, potentially global, melting events. The proposed helium isotopic evolution model does not require a primitive, undegassed mantle reservoir, and therefore is consistent with whole mantle convection.

Item Type:Article
Additional Information:
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:23 Jul 2007
Last Modified:08 Apr 2009 16:34

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library