Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


Durham Research Online
You are in:

Topological solitons.

Manton, N. S. and Sutcliffe, P. M. (2004) 'Topological solitons.', Cambridge: Cambridge University Press. Cambridge monographs on mathematical physics.

Abstract

Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.

Item Type:Book
Additional Information:Sample chapter deposited. Chapter 9: 'Skyrmions.', pp.349-415.
Full text:PDF - Published Version (5123Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.2277/0521838363
Publisher statement:© N. Manton & P. Sutcliffe 2004.
Record Created:26 Jul 2007
Last Modified:02 Jul 2010 10:33

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library