Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Glacial geomorphology and chronology of deglaciation, South Georgia, sub-Antarctic.

Bentley, M. J. and Evans, D. J. A. and Fogwill, C. J. and Hanson, J. D. and Sugden, D. E. and Kubik, P. W. (2007) 'Glacial geomorphology and chronology of deglaciation, South Georgia, sub-Antarctic.', Quaternary science reviews., 26 (5-6). pp. 644-677.

Abstract

We mapped and dated the glacial geomorphology of north-east South Georgia, in the maritime sub-Antarctic. The aim was to examine the timing of deglaciation of the island in the context of inter-hemispheric phasing of climate change. Former glacier limits are restricted to the inner fjords, and our detailed mapping of them has demonstrated a consistent geomorphological pattern that is similar across several different glacier types and sizes. The pattern comprises three suites of moraines (categories “a–c”), not all of which are represented at every site because the outer suite is often overridden by younger suites. Category “a” is an outer wide, low amplitude moraine ridge, category “b” comprises 2–4 sharp-crested, bouldery moraines that are often located close to or even over-riding “a”, and category “c” is a series of lower amplitude moraines with overprinted streamlined landforms such as flutings. Analysis of in situ cosmogenic 10Be in boulders on these moraines has allowed us to determine a deglacial chronology for the older two moraine groups. The age of the inner (youngest) group has been estimated from soil development. The cosmogenic nuclide ages show that the outermost moraine was deposited ca 12.2±1.5 ka BP, but that a subsequent readvance in the mid-Holocene (ca 3.6±1.1 ka BP) reached and, in places, over-rode this earlier moraine. This latter advance coincides with the “Mid Holocene Hypsithermal”. A final Late Holocene advance reached closely similar limits to the previous two fluctuations and is estimated from soil data to have an age of ca 1.1 ka BP. We suggest that the close concordance of Late-Glacial and interglacial limits (in this case associated with warming) can be explained by a change in dominant forcing. During glacials, extensive sea-ice limits precipitation availability and so glaciers are restricted to the inner fjords. During interglacials precipitation is not limited in the same way by sea-ice cover and so during warming precipitation increases and tidewater glaciers on the island have responded by advancing. This study emphasises the importance of a clear understanding of geomorphology in order to interpret chronological information.

Item Type:Article
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1016/j.quascirev.2006.11.019
Record Created:21 Aug 2007
Last Modified:17 Feb 2010 10:03

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library