We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

2+1 abelian `gauge theory' inspired by ideal hydrodynamics.

Krishnaswami, G. S. (2006) '2+1 abelian `gauge theory' inspired by ideal hydrodynamics.', International journal of modern physics A., 21 (18). pp. 3771-3808.


We study a possibly integrable model of Abelian gauge fields on a two-dimensional surface M, with volume form mu. It has the same phase-space as ideal hydrodynamics, a coadjoint orbit of the volume-preserving diffeomorphism group of M. Gauge field Poisson brackets differ from the Heisenberg algebra, but are reminiscent of Yang-Mills theory on a null surface. Enstrophy invariants are Casimirs of the Poisson algebra of gauge invariant observables. Some symplectic leaves of the Poisson manifold are identified. The Hamiltonian is a magnetic energy, similar to that of electrodynamics, and depends on a metric whose volume element is not a multiple of mu. The magnetic field evolves by a quadratically nonlinear "Euler" equation, which may also be regarded as describing geodesic flow on SDiff(M, mu). Static solutions are obtained. For uniform mu, an infinite sequence of local conserved charges beginning with the Hamiltonian are found. The charges are shown to be in involution, suggesting integrability. Besides being a theory of a novel kind of ideal flow, this is a toy-model for Yang-Mills theory and matrix field theories, whose gauge-invariant phase-space is conjectured to be a coadjoint orbit of the diffeomorphism group of a noncommutative space.

Item Type:Article
Keywords:Coadjoint orbits, Volume-preserving diffeomorphisms, Euler equation, Integrability.
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:09 Jan 2008
Last Modified:08 Apr 2009 16:36

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library