Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Spin relaxation effects in photochemically induced dynamic nuclear polarization spectroscopy of nuclei with strongly anisotropic hyperfine couplings.

Kuprov, I. and Craggs, T. D. and Jackson, S. E. and Hore, P. J. (2007) 'Spin relaxation effects in photochemically induced dynamic nuclear polarization spectroscopy of nuclei with strongly anisotropic hyperfine couplings.', Journal of the American Chemical Society., 129 (29). 9004 -9013.

Abstract

We describe experimental results and theoretical models for nuclear and electron spin relaxation processes occurring during the evolution of 19F-labeled geminate radical pairs on a nanosecond time scale. In magnetic fields of over 10 T, electron-nucleus dipolar cross-relaxation and longitudinal HFC-g (hyperfine coupling anisotropy - g-tensor anisotropy) cross-correlation are shown to be negligibly slow. The dominant relaxation process is transverse HFC-g cross-correlation, which is shown to lead to an inversion in the geminate 19F chemically induced dynamic nuclear polarization (CIDNP) phase for sufficiently large rotational correlation times. This inversion has recently been observed experimentally and used as a probe of local mobility in partially denatured proteins (Khan, F.; et al. J. Am. Chem. Soc. 2006, 128, 10729-10737). The essential feature of the spin dynamics model employed here is the use of the complete spin state space and the complete relaxation superoperator. On the basis of the results reported, we recommend this approach for reliable treatment of magnetokinetic systems in which relaxation effects are important.

Item Type:Article
Additional Information:
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1021/ja0705792
Record Created:16 Jan 2008
Last Modified:08 Apr 2009 16:36

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library