Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


Durham Research Online
You are in:

On the application of computer simulation techniques to anionic and cationic clays : a materials chemistry perspective.

Greenwell, H. C. and Jones, W. and Coveney, P. V. and Stackhouse, S. (2006) 'On the application of computer simulation techniques to anionic and cationic clays : a materials chemistry perspective.', Journal of materials chemistry., 16 (8). pp. 708-723.

Abstract

The use of computational methods for the study of clay minerals has become an essential adjunct to experimental techniques for the analysis of these poorly ordered materials. Although information may be obtained through conventional methods of analysis regarding macroscopic properties of clay minerals, information about the spatial arrangement of molecules within the interlayers is hard to obtain without the aid of computer simulation. The interpretation of experimental data from techniques such as solid-state nuclear magnetic resonance or neutron diffraction studies is considerably assisted by the application of computer simulations. Using a series of case studies, we review the techniques, applications and insight gained from the use of molecular simulation applied to the study of clay systems (particularly for materials applications). The amount of information that can be gleaned from such simulations continues to grow, and is leading to ever larger-scale and hence more realistic classical and quantum mechanical studies which promise to reveal new and unexpected phenomena.

Item Type:Article
Additional Information:
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1039/b506932g
Record Created:18 Jan 2008
Last Modified:08 Apr 2009 16:37

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library