We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction.

Kuprov, I. and Wagner-Rundell, N. and Hore, P. J. (2007) 'Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction.', Journal of magnetic resonance., 189 (2). pp. 241-250.


We report progress with an old problem in magnetic resonance—that of the exponential scaling of simulation complexity with the number of spins. It is demonstrated below that a polynomially scaling algorithm can be obtained (and accurate simulations performed for over 200 coupled spins) if the dimension of the Liouville state space is reduced by excluding unimportant and unpopulated spin states. We found the class of such states to be surprisingly wide. It actually appears that a majority of states in large spin systems are not essential in magnetic resonance simulations and can safely be dropped from the state space. In restricted state spaces the spin dynamics simulations scale polynomially. In cases of favourable interaction topologies (sparse graphs, e.g. in protein NMR) the asymptotic scaling is linear, opening the way to direct fitting of molecular structures to experimental spectra.

Item Type:Article
Keywords:NMR, EPR, Spin, Simulation, Polynomial scaling.
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:23 Jan 2008
Last Modified:02 Mar 2015 14:28

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library