We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization.

Zhang, Y. and Gallipoli, D. and Augarde, C. E. (2009) 'Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization.', Computers and geotechnics., 36 (4). pp. 604-615.


Simulation-based optimization methods have been recently proposed for calibrating geotechnical models from laboratory and field tests. In these methods, geotechnical parameters are identified by matching model predictions to experimental data, i.e. by minimizing an objective function that measures the difference between the two. Expensive computational models, such as finite difference or finite element models are often required to simulate laboratory or field geotechnical tests. In such cases, simulation-based optimization might prove demanding since every evaluation of the objective function requires a new model simulation until the optimum set of parameter values is achieved. This paper introduces a novel simulation-based “hybrid moving boundary particle swarm optimization” (hmPSO) algorithm that enables calibration of geotechnical models from laboratory or field data. The hmPSO has proven effective in searching for model parameter values and, unlike other optimization methods, does not require information about the gradient of the objective function. Serial and parallel implementations of hmPSO have been validated in this work against a number of benchmarks, including numerical tests, and a challenging geotechnical problem consisting of the calibration of a water infiltration model for unsaturated soils. The latter application demonstrates the potential of hmPSO for interpreting laboratory and field tests as well as a tool for general back-analysis of geotechnical case studies.

Item Type:Article
Keywords:Parameter identification, Unsaturated soils, Particle swarm optimization, Parallel computing.
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Record Created:17 Mar 2009
Last Modified:03 Nov 2011 12:07

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library