We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

A generic greedy algorithm, partially-ordered graphs and NP-completeness.

Puricella, A. and Stewart, I. A. (2001) 'A generic greedy algorithm, partially-ordered graphs and NP-completeness.', in Graph-theoretic concepts in computer science : 27th International Workshop, WG 2001, 14-16 June 2001, Boltenhagen, Germany ; proceedings. Berlin: Springer-Verlag, pp. 306-316. Lecture notes in computer science., 2204


Let π be any fixed polynomial-time testable, non-trivial, hereditary property of graphs. Suppose that the vertices of a graph G are not necessarily linearly ordered but partially ordered, where we think of this partial order as a collection of (possibly exponentially many) linear orders in the natural way. We prove that the problem of deciding whether a lexicographically first maximal subgraph of G satisfying π, with respect to one of these linear orders, contains a specified vertex is NP-complete.

Item Type:Book chapter
Keywords:Greedy algorithms, NP-completeness, Hereditary properties.
Full text:PDF - Accepted Version (225Kb)
Publisher Web site:
Publisher statement:The original publication is available at
Record Created:02 Jul 2009 14:50
Last Modified:11 Nov 2011 09:58

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library