Durham Research Online

Deposited in DRO:
11 December 2009

Version of attached file:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Further information on publisher’s website:
http://dx.doi.org/10.1007/s11334-005-0020-2

Publisher’s copyright statement:

Additional information:
The original publication is available at www.springerlink.com

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:
• a full bibliographic reference is made to the original source
• a link is made to the metadata record in DRO
• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Shengchao Qin · Wei-Ngan Chin · Jifeng He · Zongyan Qiu

From Statecharts to Verilog: a Formal Approach to Hardware/Software Co-Specification

Received: date / Accepted: date

Abstract Hardware-Software co-specification is a critical phase in co-design. Our co-specification process starts with a high level graphical description in Statecharts and ends with an equivalent parallel composition of hardware and software descriptions in Verilog. In this paper, we first investigate the Statecharts formalism by providing it a formal syntax and a compositional operational semantics. Based on that, a semantics-preserving linking function is designed to compile specifications written in Statecharts into Verilog. The obtained Verilog specifications are then passed to a partitioning process to generate hardware and software sub-specifications, where the correctness is guaranteed by algebraic laws of Verilog.

Keywords Statecharts · Verilog · operational semantics · homomorphism · algebraic laws · hardware/software partitioning

1 Introduction

The design of a complex control system is ideally decomposed into a progression of related phases. It starts with an investigation of properties and behaviors of the process evolving within its environment, and an analysis of the requirement for its safety performance. From these is derived a specification of the electronic or program-centred components of the system. The process then may go through a series of design phases, ending in a program expressed in a high level language. After translation into a machine code of a chosen computer, it can be executed at a high speed by electronic circuitry. In order to achieve time performance required by the customer, additional application-specific hardware devices may be needed to embed the computer into the system which it controls.

Classical circuit design methods resemble the low level machine language programming methods. These methods may be adequate for small circuit design, but not adequate for circuits that perform complicated algorithms. Industry interests in the formal verification of embedded systems are gaining ground since an error in a widely used hardware device can have adverse effect on profits of the enterprise concerned. A method with great potential is to develop a useful collection of proven equations and other theorems, to calculate, manipulate and transform a specification formula to the product.

Hardware/software co-design is a design technique which delivers computer systems comprising hardware and software components. A critical phase of the co-design process is the hardware/software co-specification, which starts from a high level system specification and ends with a pair of sub-specifications representing resp. hardware and software. In our previous work [23; 24], we propose a formal partitioning algorithm which splits an Occam source program into hardware and software specifications. The partitioning correctness is verified using algebraic laws developed for Occam. One of advantages of this approach is that it ensures the correctness of the partitioning process. Moreover, it optimizes the underlying target architecture, and facilitates the reuse of hardware devices.

In this paper, we first bridge the gap between the high level specification in Statecharts and the Verilog source program by defining a mapping function between
the two formalisms; and then present an algebraic hard-
ware/software partitioning process in Verilog. The over-
all co-specification process can thus be automated, as
illustrated in Fig. 1. We have made the following key con-
tributions:

- we propose a formal operational semantics for a sub-
set of Statecharts with data states, which adopts an
asynchronous model and supports true concurrency;
- we define a formal mapping function which trans-
forms a specification in Statecharts into a program in
Verilog. We show that the target program after
mapping preserves the semantics of the source
specification. This mapping is taken as the front-end of
our hardware/software co-specification process; and
- we design a collection of formal rules to partition
the above-obtained Verilog specification into hard-
ware and software sub-specifications. All the rules are
proved correct based on the algebraic semantics of
Verilog.

The remainder of this paper is organized as follows.
Section 2 gives a formal (text-based) syntax for Stat-
echarts with data states and proposes a compositional
operational semantics for it afterwards. Section 3 intro-
duces a subset of Verilog for behavioural specification.
An operational semantics and an algebraic semantics are
presented. We build a mapping function from Statecharts
into Verilog and prove that it is a homomorphism be-
tween the two formalisms in Section 4. Section 5 presents
our hardware/software partitioning process, where the
partitioning strategy and formal partitioning rules are
depicted. Related work together with a simple conclu-
sion follow afterwards.

2 Operational Semantics for Statecharts

The graphical language of Statecharts as proposed by
David Harel [5] is suitable for the specification and mod-
eling of reactive systems. While the (graphical) syntax
of the language has been formulated quite early, the de-
finite of its formal semantics proved to be more diffi-
cult than originally expected. As discussed in [22], these
difficulties may be explained as resulting from several
requirements that seem to be desirable in a specification
language for reactive systems, but yet conflict with
one another in some interpretations. This may be why
there exist more than twenty variants of Statecharts [30],
each of which can be regarded as a subset of the origi-
nally expected language. The version discussed in [7]
for STATEMATE is rather large and powerful; however,
their operational semantics is neither formal nor composi-
tional. The work presented in [18] provides a composi-
tional semantics for Statecharts, but does not contain
data states. Hoopen et al. [15] propose a denotational sem-
antics based on histories of computation. Following this
line, [29] attempts to link the denotational semantics of
Statecharts with temporal logic, as to support formal
verification. All these works adopt a synchronous model
time, which is simpler to understand and formalize,
but less powerful than the asynchronous model.

Our version of Statecharts involves data items. The
model we adopt is the asynchronous model, which is
more powerful for specifying and modeling complex sys-
tems. Our formal operational semantics comprises the
following features:

- It is compositional, which implies that inter-level tran-
sitions and state references have been dropped. The
history mechanism has also been ignored.
- It adopts an asynchronous time model, in which a
macro-step (comprising a sequence of micro-steps)
occur instantaneously. This model supports perfect
synchrony hypothesis and also supports state refine-
ment in top-down design.
- It reflects the causality of events.
- To be more intuitive, our semantics obeys local con-
sistency, rather than global consistency. That is, the
absence of an event may lead to itself directly or in-
directly in the same macro-step.
- Instantaneous states are allowed, but each state can-
ton not be entered twice or more at the same instant of
time. ¹
- It covers the data-state issues of Statecharts, allowing
assignments in state transitions.

¹ For simplicity, this checking is omitted in our semantics.
We can include it by keeping records of the states that are
passed so far in the current macro-step and prevent a former
state from being re-entered in each macro-step.
It supports true concurrency.

In this paper, timeout events are not included and this aspect is left as future work.

In what follows we give a formal syntax for Statecharts, and afterwards investigate its operational semantics thoroughly.

2.1 A Formal Syntax of Statecharts

Quoting from [6], state charts = finite-state diagrams + depth + orthogonality + broadcast communication. This equation indicates the typical features of the Statecharts formalism:

- It is an extension of conventional finite state machines (Mealy machine).
- It provides natural notion of depth. A state can either be a basic one, or of a hierarchical structure, inside which some other states are treated as its substates.
- It supports the modeling of concurrency. A state may contain several states as its concurrent components. This feature also helps to avoid state explosion.
- It provides the broadcast communication mechanism. Unlike CSP or CCS, output events in Statecharts are asynchronous, and can be broadcast to any receiver without waiting. However, input events in Statecharts are synchronous, and are blocked until the arrival of the corresponding output events. Such a communication mechanism is similar to Verilog.

In order to formalize the syntax of Statecharts, we introduce the following notations:

- \mathcal{S}: a set of names used to denote Statecharts which is large enough to prevent name conflicts.
- Π: the set of all abstract events (signals). We also introduce another set Π_τ to denote the set of negated counterparts of events in Π_τ, i.e. $\Pi_\tau = \{\bar{e} \mid \bar{e} \in \Pi_\tau\}$, where \bar{e} denotes the negated counterpart of event e, and we assume $\bar{\bar{e}} = e$.
- \mathcal{P}: the set of all assignment actions of the form $v = \exp$.

$s: \text{Var} \rightarrow \text{Val}$ is the valuation function for variables, where Var is the set of all variables, Val is the set of all possible values for variables. A snapshot for variables \bar{v} is $\sigma(\bar{v})$.

- \mathcal{T}: the set of transitions, which is a subset of $\mathcal{S} \times 2^{\Pi_\tau \cup \Pi_\tau} \times 2^{\Pi_\tau \cup \Pi_\tau} \times B \times \mathcal{S}$, where B is the set of boolean expressions.

Similar to [19; 18], we give a term-based syntax for Statecharts. The set SC of Statecharts terms is constructed by the following inductively defined functions.

Some informal explanations follow:

- $\text{Basic}(s)$ denotes a basic statechart named s.
- $\text{Or}(s, [p_1, \ldots, p_n], p, T)$ represents an Or-statechart with a set of substates $\{p_1, \ldots, p_n\}$, where p_1 is the default substate, p is the active substate, T is composed of all possible transitions among immediate substates of s.
- $\text{And}(s, \{p_1, \ldots, p_n\})$ is an And-statechart named s, which contains a set of orthogonal (concurrent) substates $\{p_1, \ldots, p_n\}$.

2.2 Operational Transition Rules

The configuration of computation is defined by a triple (p, σ, E_{in}), where

- p is the syntax of the statechart of interest.
- σ gives the snapshot of data items.
- E_{in} denotes the current environment of active events.

The behaviour of a statechart is composed of a sequence of macro-steps, each of which comprises a sequence of micro-steps. A statechart may react to any stimulus from the environment at the beginning of each macro-step by performing some enabled transitions and generating some events. This may fire other state transitions and lead to a chain of micro-steps without advancing time. During this chain of micro-steps, the statechart does not respond to any potential external stimulus. When no more internal transitions are enabled, the clock tick transition will occur by emptying the set of active events and advancing time by one unit.

We explore a set of transition rules comprising state transitions and time advance transitions.

At any circumstance, what a basic statechart can do is to advance time by a clock tick.

1. $[[s]], \sigma, E \xrightarrow{\tau} [[s]], \sigma, 0$

If a transition between two immediate substates of an Or-statechart is enabled and the transition condition is true in current circumstance, it can be performed.

$$p = [[s : [p_1, \ldots, p_n], p, T]], \quad \tau \in En(p, E) \land \sigma(b)$$

$$2. \quad (p, \sigma, E) \xrightarrow{\text{Basic}} \begin{cases} (p_\text{next}, \text{Basic}(\text{Or}(s, [p_1, \ldots, p_n], p, T), \sigma')) \\ (p_\text{next}, \text{Basic}(\text{And}(s, \{p_1, \ldots, p_n\}), \sigma')) \end{cases}$$

where

- $\text{src}(\tau)$ and $\text{tgt}(\tau)$ denote, respectively, the source and target state of transition τ.
- $\alpha'(\tau) \subseteq \Pi$ represents all events generated by transition τ, whereas $\alpha(\tau)$ denotes a single assignment action $v = \exp$ generated by τ. No loss of general results since a sequence of instantaneous assignment statements can be transformed into a single one. This changes the data state from σ to $\alpha' = \sigma \oplus \{v \mapsto \sigma(\exp)\}$.

}
En(p, E) comprises all transitions among substates of p being enabled by events in E. It can be generated by the following definition.

\[\tau \in En([s : [p_1, \ldots, p_n], p, T]), E] \quad \text{iff} \quad \tau \in T \land \text{src}(\tau) = p \land \text{trig}^+(\tau) \subseteq E \land \text{trig}^-(\tau) \cap E = \emptyset. \]

where trig^+(\tau) and trig^-(\tau) represent respectively the positive events and the negated events from \(\tau \).

The function \(a2d(p) \) changes the active substate of \(p \) into its default substate, and the same change is applied to its new active substate.

\[a2d([s]) = [s] \]

\[a2d([s : [p_1, \ldots, p_n], p, T]) = [s : [p_1, \ldots, p_n], a2d(p), T] \]

\[a2d([s : [p_1, \ldots, p_n]]) = [s : [a2d(p_1), \ldots, a2d(p_n)]] \]

The substitution \(p_{[p \rightarrow p_m]} \) for an Or-statechart \(p = ([s : [p_1, \ldots, p_n], p, T]] \) is defined by

\[p_{[p \rightarrow p_m]} = [s : [p_1, \ldots, p_m, p_m, T]] \]

Discussion: In rule 2, those events that are used to trigger \(\tau \) are consumed by \(\tau \) and will no longer exist. This mechanism looks intuitive and reasonable and can help to prevent incorrect looping. Consider an example given in Fig. 2 (a). When the first event \(e \) from the environment comes, the transition \(\tau_1 \) is performed and the active substate is migrated from \(p_1 \) to \(p_2 \). This will not move back to \(p_1 \) until next event \(e \) occurs, as under normal expectation. Earlier work [22] suggests a different treatment, where active events are kept active during all micro-steps in a macro-step, where they may be reused many times.

The transitions in Statecharts are considered hierarchically. If no transitions among immediate substates of an Or-statechart are enabled, an enabled (inner) transition for the active substate may be performed instead. This consideration is carried out inductively as highlighted in rule 3.

\[p = ([s : [p_1, \ldots, p_n], p, T]] \quad \text{En}(p, E) = \emptyset \]

\[\langle p, \sigma, E \rangle \xrightarrow{k \delta} \langle p \sigma' \rangle \quad (E - \text{trig}^+(\tau) \cup \sigma'(\tau)) \]

If no transition is enabled for an OR-statechart, time advances, as shown below.

\[\text{En}^*(p, E) = \emptyset \]

\[\langle p = ([s : [p_1, \ldots, p_n], p, T]], \sigma, E \rangle \xrightarrow{\gamma} \langle p, \sigma, 0 \rangle \]

The premise indicates that no transitions in \(p \) can be triggered by \(E \). The set of transitions that are enabled at multiple levels is defined as follows.

\[\text{En}^*([s]), E) = \emptyset, \text{for any basic state} [s]; \]

\[\text{En}^*([s : [p_1, \ldots, p_n], p, T], E) = \emptyset \cup \text{En}^*(p', E); \]

\[\text{En}^*([s : [p_1, \ldots, p_n]]) = \emptyset \cup \bigcup_{1 \leq i \leq n} \text{En}^*([p_i], E). \]

For an AND-statechart, variables are shared by all orthogonal components. However, each variable can only be modified by one component. We use \(WVar(p) \) to denote the set of variables that can be modified by a statechart \(p \).

It is natural and intuitive to accept that several transitions allocated in orthogonal components may be fired simultaneously. This implies that they can be performed in a truly concurrent way. However, we have to write the transition rule for parallel charts carefully. Let us look at the statechart in Fig. 2 (b). Suppose the external stimulus \(E = \{a, b, c\} \), which will fire both \(\tau_3 \) and \(\tau_4 \) at the same moment. Under rule 2, performing either of them will prevent another from happening since the common event \(b \) is consumed by the performed transition. This contradicts the above intuitive explanation.

We propose a more reasonable way in which simultaneously enabled transitions are allowed to occur concurrently within And-charts. In the following rule, we suppose \(i_1, \ldots, i_n \) is a permutation of \(1, \ldots, n \).

\[p = ([s : [p_1, \ldots, p_n]], \text{all } p_i \text{ are constructed by Basic or Or} \]

\[\langle p_{i_1}, [s], E \rangle \xrightarrow{\delta_{i_1} \kappa_{i_1}} \langle p_{i_1}, \sigma_{i_1}, E_{i_1} \rangle, \text{for all } 1 \leq k \leq m \]

\[\text{En}^*(p_{i_1}, E_{i_1}) = \emptyset, \text{for all } m \leq k \leq n \]

\[WVar(p_{i_1}) \cap WVar(p_{i_2}) = \emptyset, \text{for all } i \neq j \]

\[\sigma' = \sigma_{i_1} \oplus \cdots \cdots \oplus \sigma_{i_m} \]

\[E' = \emptyset \cup \bigcup_{1 \leq i \leq m} \text{trig}^+(\tau_{i_k}) \cup \bigcup_{1 \leq i \leq m} \sigma'(\tau_{i_k}) \]

\[\dot{p} = \left[\left[s : [p_{i_1}', \ldots, p_{i_m}', \ldots, p_n'] \right] \right] \]

\[\langle p, \sigma, E \rangle \xrightarrow{\delta_{i_1} \kappa_{i_1}} \langle p_{i_1}', \sigma', E' \rangle \]

In this rule, the overall transition that the And-chart \(p \) performs involves several simultaneously enabled transitions \(\tau_{i_k} (1 \leq k \leq m) \) which are performed respectively by components \(p_{i_k} (1 \leq k \leq m) \). Other components \(p_{i_k} \) \((n < k \leq n) \) are not involved in this transition.

A time advance transition will take place if all orthogonal components agree to do so.

\[\text{En}^*(p_{i_1}, E_{i_1}) = \emptyset, i = 1, \ldots, n \]

\[\langle p = ([s : [p_1, \ldots, p_n]], \sigma, E) \xrightarrow{\gamma} \langle p, \sigma, 0 \rangle \]

3 Verilog and Its Formal Semantics

Hardware description languages (HDLs) are widely used to express designs at various levels of abstraction in modern hardware design. A HDL typically contains a high level subset for behaviour description, with the usual programming constructs such as assignments, conditionals, guarded choices and iterations. It also has appropriate extensions for real-time, concurrency and data structures for modeling hardware. VHDL and Verilog [16] are two contemporary HDLs that have been used for years, where Verilog HDL has been standardized and widely adopted in industry [16]. Verilog programs can exhibit a rich variety of behaviours, including event-driven computation and shared-variable concurrency. In our hardware/software partitioning process, the non-trivial subset of Verilog we adopt contains the following categories of syntactic elements.
1. A Verilog program can be a sequential process or a program paralleled by several sequential processes, with or without local variable declaration.

\[P := S | P \parallel P | \text{var } x \cdot P \]

2. A sequential process in Verilog can be any of the following forms.

\[S := \text{PC}(\text{primitive command}) | S; S (\text{sequential composition}) | S \preceq b \triangleright S (\text{conditional}) | b \ast S (\text{iteration}) | (g S) \ldots (g S) (\text{guarded choice}) | \text{always } S (\text{infinite loop}) | \text{case}(e)(p_1 S) \ldots (p_n S) (\text{switch statement}) \]

where

\[\text{PC} := v := e | \text{sink} | \text{skip} | \downarrow | \rightarrow \eta | v := eg e \]

\[g := \#n (\text{time delay}) | eg (\text{event control}) | \rightarrow \eta (\text{output event}) \]

\[eg := \#n | eg | eg \& eg | eg \& \neg e \]

\[\eta := \sim v (\text{value change}) | \uparrow v (\text{value rising}) | \downarrow v (\text{value falling}) \]

\[\eta \in \mathbb{A} (\text{a set of abstract events}) \]

To facilitate algebraic reasoning, the language is enriched with

- assignment event \(@(v := e) \)
- general guarded choice construct \((g_1 P_1) \ldots (g_n P_n) \)
- non-deterministic choice \(P \uplus Q \)

Although it is reported that Verilog has been much more widely used in industry than VHDL [3], the formal semantics of Verilog has not been fully studied. Gordon [4] tries to relate event semantics of Verilog to its trace semantics. He and Zhu [13; 35] explore an operational and a denotational semantics for Verilog and investigate some algebraic laws from them. Zhu, Bowen and He [32; 34; 33] establish formal consistency between above-mentioned two presentations. Iyoda and He [17] successfully apply simple algebraic laws of Verilog to hardware synthesis process. In [8], He has explored a collection of algebraic laws for Verilog, by which a well-formed Verilog program can be transformed into head normal forms. In the following, we first present an operational semantics for the subset of Verilog that we adopt and then explore some algebraic laws for it. The operational semantics will be used to build the formal link between Statecharts and Verilog, while the algebraic semantics will play a fundamental role in our hardware/software partitioning process. The discussion on the consistency between the operational and algebraic semantics is out of the scope of this paper, readers can refer to [31] where a detailed discussion on unifying different semantics is available.

3.1 Operational Semantics

The subset of Verilog we adopt is quite similar to that proposed by He [8]. However, there are some different treatments between our version and that in [8]. We include explicitly the possible context environment of active events in our configuration, and change the operational rules for the parallel constructs. This facilitates the semantic mapping from Statecharts into Verilog, and does not change the observable behaviour of a program.

In our operational semantics of Verilog, transitions are of the form \(S \xrightarrow{I} S'. \) The configuration \(S \) describes the state of an executing mechanism of Verilog programs together with the environment of active events before an action \(I \), whereas \(S' \) describes that immediately after. They are identified as triples \(\langle P, \sigma, E \rangle \), where

- \(P \) is a program text, representing the rest of the program that remains to be executed.
- \(\sigma : \text{Var} \rightarrow \text{Val} \) records the data state.
- \(E \) is the current set of active events.

A label \(l \) denotes a transition from state \(S \) to \(S' \). It can be a clock tick event \(\sqrt{v} \), or a compositional event possibly with three conjunctive parts: \(b \& g \& g' \) representing the enabling condition, the set of events consumed, and the set of events generated, respectively.
Now we present a critical subset of transition rules which are relevant to our transformation from Statecharts into Verilog.

The primitive \(\text{sink} \) can do nothing but advance time by a clock tick.

\[
\langle \text{sink}, \sigma, E \rangle \xrightarrow{\sigma} \langle \text{sink}, \sigma, \emptyset \rangle
\]

The guarded choice construct

\[
P = (b_1 \& g_1^1 \& g_1^2 P_1) \& \cdots \& (b_n \& g_n^1 \& g_n^2 P_n)
\]

can take a guarded transition if that guard is enabled.

\[
\sigma(b_k) \land (E \models g_k^1), \text{ for some } k
\]

where \(E \models g_k^1 \) indicates that the input guard \(g_k^1 \) is enabled by \(E \). This is defined as:

\[
E \models g_k^1 \iff \exists \sigma \in \Sigma \land \forall 1 \leq i \leq m \land \forall 1 \leq j \leq n \land (g_k^1 \land g_k^2 \models E = \emptyset)
\]

Also, \(e^c(g^1) \) extracts all “positive” events from the input guard \(g^1 \) (to be consumed when enabling the guard), i.e.,

\[
e^c(g^1) = \bigcup_{1 \leq i \leq m} \varepsilon_i
\]

and \(e^g(g^2) \) records the set of events generated by the output guard \(g^2 \). Given an output guard \(g^2 \models \rightarrow e^g(\varepsilon(x = v)) \), the generated events are

\[
e^g(g^2) = \varepsilon \cup \{ \uparrow x \}, \text{ if } \sigma(x) < v,
\]
\[
e \cup \{ \downarrow x \}, \text{ if } \sigma(x) > v,
\]
\[
\varepsilon, \text{ otherwise.}
\]

If no guard is enabled, the clock tick can be performed.

\[
\forall k : 1 \leq k \leq n \quad (\neg \sigma(b_k) \land (E \models g_k^1)) \quad \langle P, \sigma, E \rangle \xrightarrow{\sigma} \langle P', \sigma, \emptyset \rangle
\]

where \(P' \) is the same as \(P \) if no time delay guards \(\#(\#) \) appear in \(P \). Otherwise, it is the guarded choice obtained from \(P \) by eliminating all time delay guards.

A parallel construct of guarded choices \(P \) is of the form \(G_1 \parallel \cdots \parallel G_n \) where

\[
G_k = I_{1 \leq j \leq m} (b_{jk} \& g_{jk}^1 \& g_{jk}^2 P_{jk}, 1 \leq k \leq n
\]

This can be transformed into a guarded choice construct by algebraic laws [8]. Here, we give the transition rules for the parallel construct directly. It can perform a (compositional) guarded transition if some threads agree, where \(i_1, \ldots, i_n \) denotes a permutation of \(1, \ldots, n \).

\[
\langle G_k, \sigma, E \rangle \xrightarrow{i_k} \langle P_{i_k}, \sigma_{i_k}, E_{i_k} \rangle, 1 \leq k \leq m
\]

\[
\forall j : 1 \leq j \leq n \quad (\neg \sigma(b_{i_j}) \land (E \models g_{i_j}^1)), 1 \leq k \leq n
\]

\[
E' = \bigcup_{1 \leq k \leq m} \{ \uparrow x \}, \text{ if } \sigma = \sigma_{i_1} \parallel \cdots \parallel \sigma_{i_n}
\]

\[
\langle P, \sigma, E \rangle \xrightarrow{i_k} \langle P', \sigma', E' \rangle
\]

3.2 Algebraic Laws

We discuss the algebraic semantics of Verilog in this section, which will be useful in later discussions. Before presenting the algebraic laws, we define a triggering predicate as follows.

Definition 1 Given an event control \(\text{ctl} \), we define those simple events that enable \(\text{ctl} \) as follows.

\[
\text{tr}(\text{ctl}) = \{ \{ \uparrow x \}, \text{ if } \text{ctl} = \uparrow x \\
\{ \downarrow x \}, \text{ if } \text{ctl} = \downarrow x \\
\{ \uparrow x, \downarrow x \}, \text{ if } \text{ctl} = \downarrow x
\}
\]

Given an output event \(\rightarrow \eta \) and an event control \(\text{ctl} \), we adopt a triggering predicate, denoted as \(\eta \leadsto \text{ctl} \), to describe the condition under which the former enables the later.

\[
\eta \leadsto \text{ctl} \quad \text{if and only if } \text{tr}(\eta) \subseteq \text{tr}(\text{ctl})
\]

and adopt the predicate, \(\eta \leadsto \text{ctl} \), to denote the condition when the former cannot trigger the later.

\[
\eta \leadsto \text{ctl} \quad \text{if and only if } \text{tr}(\eta) \cap \text{tr}(\text{ctl}) = \emptyset
\]

By this definition, we can define the well-formedness of guarded choice constructs:

Definition 2 A guarded choice \(\{ i \in I \mid g_i P_i \} \) is well-formed if and only if all its input guards are disjoint, i.e., for any input guards \(g_k, g_l \) from \(\{ g_i \mid i \in I \} \), if \(\text{tr}(g_k) \cap \text{tr}(g_l) \neq \emptyset \), then \(g_k = g_l \), and \(P_k \) and \(P_l \) are exactly the same process.

\[\Box\]
All guarded choice constructs are well-formed in later discussions.

Now, we explore a collection of useful algebraic laws for Verilog programs.

Successive assignments to the same variable can be combined to a single one.

\[
\text{(assign-1)} \quad v := e; v := f = v := f[v/v]
\]

In an assignment to a list of variables, the order of variables is irrelavtive.

\[
\text{(assign-2)} \quad u, v := e, f = v, u := f, e
\]

Variables not occurred on the left side of an assignment remain unchanged during the assignment.

\[
\text{(assign-3)} \quad u := e = u, v := e, v
\]

\textit{skip} does not change the value of any variable.

\[
\text{(assign-4)} \quad \text{skip} = v := v
\]

Sequential composition is associative, and has left zero \(\bot\). It distributes backward over conditional, internal and external choices.

\[
\text{(seq-1)} \quad (P; Q); R = P; (Q; R)
\]

\[
\text{(seq-2)} \quad P; \bot = \bot
\]

\[
\text{(seq-3)} \quad (P \sqcap Q); R = (P; R) \sqcap (Q; R)
\]

\[
\text{(seq-4)} \quad (P \triangleleft b \triangleright Q); R = (P; R) \triangleleft b \triangleright (Q; R)
\]

\[
\text{(seq-5)} \quad \{ \text{let } g_i \text{ in } (g_i; Q_i) \}; R = \{ \text{let } g_i \text{ in } (g_i; Q_i; R) \}
\]

By the following law, we can transform a sequential composition of an output event and a guarded choice into a guarded process \((gP)\), where output guard \(g\) will no longer fire guards of \(P\).

\[
\text{(seq-6)} \quad S = \bigsqcup_{i \in I} (g_i; P_i), \text{ and } g \text{ is the disjunction of all input guards of } S.
\]

1. \(\rightarrow \eta; S = \{ \rightarrow \eta; S \text{ if } \eta \rightsquigarrow g \}; \rightarrow \eta; P_k \text{ if } \eta \rightsquigarrow g_k \text{ for some } k \in I.\)

2. \((x < f) \sqcap; @(x := f); S = \{ (x < f) \sqcap; @(x := f) \}; S \text{ if } \uparrow x \rightsquigarrow g; \)

3. \((x > f) \sqcap; @(x := f); S = \{ (x > f) \sqcap; @(x := f) \}; S \text{ if } \downarrow x \rightsquigarrow g; \)

4. \((x = f) \sqcap; @(x := f); S = (x = f) \sqcap; @(x := f); S \text{ where } b_\bot \text{ is an assertion defined as } \text{skip} \triangleleft b \triangleright \bot \) ([14]).

For a general guarded choice \(G\), we can also transform it by this law into a guarded choice \(\bigsqcup_{i \in I} (g_i; P_i)\), where no output guard in \(\{g_i \mid i \in I\}\) will enable any guards of the process following it. Without loss of generality, from now on, we assume all guarded choices meet this property.

Assignment distributes forward over conditional.

\[
\text{(cond-1)} \quad v := e; (P \triangleleft b(v) \triangleright Q) = (v := e; P) \triangleleft b(e) \triangleright (v := e; Q)
\]

Iteration is subject to the fixed point theorem.

\[
\text{(iter-1)} \quad b * P = (P; b \triangleright P) \triangleleft b \triangleright \text{skip}
\]

Non-deterministic choice is idempotent, symmetric and associative.

\[
\text{(nond-1)} \quad P \sqcap P = P
\]

\[
\text{(nond-2)} \quad P \sqcap Q = Q \sqcap P
\]

\[
\text{(nond-3)} \quad (P \sqcap Q) \sqcap R = (P \sqcap R) \sqcap Q
\]

Parallel operator is symmetric and associative, and has \(\bot\) as zero.

\[
\text{(par-1)} \quad P |\!| Q = Q |\!| P
\]

\[
\text{(par-2)} \quad P |\!| (Q |\!| R) = (P |\!| Q) |\!| R
\]

\[
\text{(par-3)} \quad \top |\!| P = \top
\]

Local variable declaration enjoys the following laws.

\[
\text{(lvar-1)} \quad \text{var } x \cdot (x := e) = \text{skip}
\]

\[
\text{(lvar-2)} \quad \text{var } x \cdot (P \triangleleft b \triangleright Q) = (\text{var } x \cdot P) \triangleleft b \triangleright (\text{var } x \cdot Q), \text{ provided } x \text{ is not free in } b.
\]

\[
\text{(lvar-3)} \quad \text{If } x \text{ is not free in } Q, \text{ then } \begin{align*}
(1) & \quad \text{var } x \cdot Q = Q \\
(2) & \quad \text{var } x \cdot P; Q = \text{var } x \cdot (P; Q) \\
(3) & \quad Q; \text{var } x \cdot P = \text{var } x \cdot (Q; P) \\
(4) & \quad \text{var } x \cdot P |\!| Q = \text{var } x \cdot (P |\!| Q)
\end{align*}
\]

\[
\text{(lvar-4)} \quad \text{var } v \cdot (\rightarrow \eta; P) = \text{var } v \cdot (\text{skip}; P)
\]

\[
\text{(lvar-5)} \quad \text{var } u \cdot (\text{var } v \cdot P) = \text{var } v \cdot (\text{var } u \cdot P)
\]

We will denote \text{var } x \cdot \text{var } y \ldots \cdot \text{var } z as \text{var } x, y, \ldots, z.

The following is a set of expansion laws which enables us to convert a parallel process into a guarded choice. We assume that

\[
\begin{align*}
G_1 &= \bigsqcup_{i \in I} (g_i; P_i) \\
G_2 &= \bigsqcup_{j \in J} (h_j; R_j) \\
G_3 &= \bigsqcup_{k \in K} (e_{v_k}; P_k) \\
G_4 &= \bigsqcup_{l \in L} (e_{u_l}; T_l)
\end{align*}
\]

where all \(g_i\) and \(h_j\) are input guards (like \(\eta\)); all \(e_{v_k}\) and \(e_{u_l}\) are respectively output events with respect to variables \(v_k\) and \(u_l\) (like \(\eta \rightarrow \eta \) or \(\eta @ (x := f)\)).

\[
\text{(par-4)} \quad (x := e; G_1) |\!| (y := f; G_2) = \\
\begin{align*}
&@ (x := e) (@ (y := f) |\!| (x := e; G_1) |\!| (y := f; G_2))) \\
&\oplus (y := f) (@ (x := e; G_1) |\!| (y := f; G_2))
\end{align*}
\]

\[
\text{(par-5)} \quad G_1 |\!| (y := f; G_2) = \\
@ (y := f) (@ (y := f; G_1) |\!| G_2) \\
\oplus (y := f; G_1)
\]

\[
\text{(par-6)} \quad G_1 |\!| (G_2 |\!| G_4) = \\
\bigsqcup_{i \in I} (g_i; \rightarrow \eta; Q_i) |\!| (G_2 |\!| G_4)
\]

where \(\eta\) is a variable and \(Q_i\) is an assertion defined as \(\text{skip} \triangleleft b \triangleright \bot\) ([14]).
\[\forall j \in J \ (h_j & \& \neg g) \ (G_1 | G_3 \ | \ R_j) \]
\[\forall i \in I \forall j \in J \ (g_i & \& h_j) \ (Q_i \ | \ R_j) \]
\[\forall e \in K_i \forall e \in R \ (e \in (G_k \ | \ G_s) \ | \ R_j) \]
\[\forall e \in K_i \forall e \in R \ (e \in (G_k \ | \ G_s) \ | \ R_j) \]
\[\forall e \in K_i \forall e \in R \ (e \in (G_k \ | \ G_s) \ | \ R_j) \]
\[\forall e \in K_i \forall e \in R \ (e \in (G_k \ | \ G_s) \ | \ R_j) \]

(par-7) An assignment thread is involved.

1. \((x := e) \rightarrow (y := f) \rightarrow (x := e)\)
2. \((x := e) \rightarrow (G_2 = (x := e) G_2) \rightarrow (h_j ((x := e) | R_j))\)

The parallel operator is disjunctive.

(par-8) \((P \cap Q) | R = (P | R) \cap (Q | R)\)

In some special cases, the parallel operator distributes over conditional.

(par-9) \(\forall v_1, \ldots, v_n \bullet (S_1 \prec b \succ S_2) | G = \)

\(\forall v_1, \ldots, v_n \bullet (S_1 | G \prec b \succ (S_2 | G)) \)

provided guards in \(G \) are either event controls with respect to variables in \(\{v_1, \ldots, v_n\} \) or time-delay guards.

Time-delay guards are involved in the following law.

(par-10) Let \(n_1 > n_2 > 0, n > 0 \).

1. \((\#n S) | G_3 = G_3\)
2. \((G_1 | \#n_1 S) | (G_2 | \#n_2 T) = \)
\[\forall i \in I \ ((g_i & \& \neg h) (Q_i | (G_2 | \#n_2 T)) | \]
\[j \in J \ ((h_j & \& \neg g) ((G_1 | \#n_1 S) | R_j)) | \]
\[\forall #n_2 ((\#n_1 - n_2) S | T) \]
3. \((G_1 | \#n S) | G_2 | \#n T = \)
\[\forall i \in I \ ((g_i & \& \neg h) (Q_i | (G_1 | \#n S)) | R_j)) | \]
\[j \in J \ ((h_j & \& \neg g) ((G_1 | \#n S) | R_j)) | \]
\[\forall \#n T | S | T \]

The guarded choice is idempotent, symmetric and associative.

\((\text{guard-1}) \ G_1 | G_1 = G_1 \)

\((\text{guard-2}) \ G_1 | G_2 = G_2 | G_1 \)

\((\text{guard-3}) \ (g_1 Q_1) | ((g_2 Q_2) | (g_3 Q_3)) = \)
\[(g_1 Q_1) | ((g_2 Q_2) | (g_3 Q_3)) \]

\((\text{guard-4}) \ \forall v \bullet ((\eta e P) | G_1) = \forall v \bullet G_1 \)

The construct always \(S \) executes \(S \) forever.

\((\text{always-1}) \ \forall \ \text{always} \ S = S; \text{always} \ S \)

Take note that \(\text{skip} \) is not a left zero of sequential composition in general cases, because it might filter some signal. Hereby, the following in-equation is obvious.

\(\uparrow v \neq \text{skip}; \uparrow v \)

The following definition will capture those cases where \(\text{skip} \) is a left zero of sequential composition.

Definition 3 (Event control insensitive)

A process \(P \) is event control insensitive if \(\text{skip} \ P = P \).

Proposition 1 The following processes are event control insensitive.

1. \(\forall x := e, \text{skip}, \bot, \#(t) \)
2. \(\forall x := e, \rightarrow \eta e \)
3. \(\forall P < b \succ Q, b \succ Q, \text{case} (e) (p_1 \ S_1) \ldots (p_n S_n) \)
4. \(\forall \ (g_i Q_i), v := g e, \text{where no guards are event controls} \)
5. \(\forall \ P_1; P_2, P_1 \| P_2, \text{where both} P_1 \text{ and} P_2 \text{ are event control insensitive} \)
6. \(\forall \text{always} S, \text{where} S \text{ is event control insensitive} \)
7. \(\forall \ v_1, \ldots, v_n \bullet (S_1 \| \ldots \| S_n), \text{where each} S_i \text{ is either event control insensitive, or only guarded by events with respect to variables in} v_1, \ldots, v_n \)

From those basic algebraic laws mentioned above, we investigate the following lemma, which will be very useful in later discussions.

Lemma 1 Let \(P = (\eta e S, Q = (\rightarrow \eta e; \eta e Q) \)

\(\text{suppose} \ \text{sequential programs} P_1; P_2; Q_1 \text{ are event control insensitive, and variables} u, v \text{ do not occur in} P_1 \text{ or} Q_1 \)

1. \((\text{var} \ u, v \bullet (P \| Q) = (\text{var} \ u, v \bullet (P_2 \| (\eta e Q_2)) \)
2. \((\text{var} \ u, v \bullet (P \| (Q; Q)) = (\text{var} \ u, v \bullet (Q_1; (P \| Q)) \)
3. \((\text{var} \ u, v \bullet ((P_1; P) \| (Q_1; Q)) = (\text{var} \ u, v \bullet ((P_1 \| Q_1) \| (P \| Q)) \)

Proof The proof is given in the Appendix.

We introduce an ordering relation between programs before further investigation.

Definition 4 (Refinement)

Let \(P, Q \) be Verilog processes employing the same set of variables, we say \(Q \) is a refinement of \(P \), denoted as \(P \sqsubseteq Q \), if \(P \cap Q = P \) is algebraically provable.

4 Mapping Statecharts into Verilog

In this section, we build a link between Statecharts and Verilog, by which a Statecharts description can be mapped to its corresponding Verilog program. We show such a mapping preserves the semantics and can be conducted in a compositional manner.
4.1 Mapping Function

Before constructing the mapping function called L, we address some subtle issues and introduce some notations. There exist two features which complicate the definition of L on an Or-chart, one is the hierarchical feature of Statecharts and the priority of transitions, whereas the other lies in that an And-chart can be a sub-chart of an Or-chart. This feature differentiates Statecharts from conventional programming languages. The former indicates that transitions in an outer level (rule 2) has higher priority than those in an inner level (rule 3). The possible transitions are considered hierarchically, starting from the current active state, and progressing into inner active substates. By enumerating these transitions in accordance with the hierarchy, we can cope with the different priorities for transitions occurring in distinct levels.

To deal with the above features, we prepare the following formal notations. We first give a function or-depth : SC → N to calculate the “or-depth” of a statechart, which is defined as follows:

- for a statechart $c = [s]$ constructed by Basic, or-depth$(c) = 0$;
- for a statechart $c = [s : [p_1, \ldots, p_n], p, T]$ constructed by Or, or-depth$(c) = or-depth(p) + 1$;

for a statechart $c = [s : [p_1, \ldots, p_n]]$ constructed by And, or-depth$(c) = 1$.

The or-depth of an Or-chart just records the deepness of the path transitively along its active Or-substates. We stop going further once an And-state is encountered. The or-depth of an And-chart is simply 1.

Secondly, we extend some notations from Or-charts to And-charts. As already known, for an Or-chart $c = [s : [p_1, \ldots, p_n], p, T]$, active$(c) = p$ denotes its current active substate; for any transition $\tau \in T$, src(τ) and trg(τ) respectively represent its source and target state. Given an And-chart $c = [s : [p_1, \ldots, p_n]]$, where all p_i are Or-charts, we define its current active state as a vector of the active states of these constituent states, i.e., active$(c) = [active(p_1), \ldots, active(p_n)]$. We use $T(c)$ to denote all possible (perhaps compositional) transitions of the And-chart c. Given a transition $\tau = \tau_1 \cdot \ldots \cdot \tau_k \in T(c)$, where $\tau_k \in T^*(p_i)$, for $1 \leq k \leq m$, and i_1, \ldots, i_n is a permutation of $1, \ldots, n$, we define its source state and target state respectively as follows:

$$ src(\tau) = q_{i_1} \cdot \ldots \cdot q_{i_n}, \quad trg(\tau_k) $$

for $1 \leq k \leq m$, and $q_{i_k} = active(p_{i_k})$, for $m < k \leq n$.

2 For an Or-chart $p = [s : [p_1, \ldots, p_n], p, T]$, $T(p)$ contains all possible transitions inside p along its transitive active substate chain, i.e., $T(p) = \{ \tau \mid \tau \in T \land src(\tau) = p \} \cup T(p)$. With the help of $T(p)$, we define the aforementioned possible transition set $T(c)$ for an And-chart $c = [s : [p_1, p_2]]$ formally as $T(c) = \{ \tau_1 \cdot \ldots \cdot \tau_k \mid \tau_i \in T^*(p_i), i = 1, 2 \} \cup \{ \tau_1 \cdot \ldots \cdot \tau_i \mid \tau_k \in T(p_k), i = 1, 2 \}$. The transition set for the general And-chart with n components can be defined similarly.

We define $tg(\tau) = (r_1, \ldots, r_n)$, where $r_{i_k} = tg(\tau_k)$, for $1 \leq k \leq m$, and $r_{i_k} = active(p_{i_k})$, for $m < k \leq n$.

Thirdly, we need to know the resulting statechart after a transition is taken. When a transition τ occurs, any involved statechart can have changes in its (transitive) active substates. We use a function $\text{res}: T \times SC \rightarrow SC$ to return the modified statechart after performing a transition in a statechart. It is defined inductively with regard to the type of the statechart.

- for a Basic-chart c and a transition τ, res$(\tau, c) = c$;
- for an Or-chart $c = [s : [p_1, \ldots, p_n], p, T]$, and a transition τ,

$$ \text{res}(\tau, c) = \begin{cases} \text{res}(\tau, p_1), & \text{if } \tau \in T \land src(\tau) = p_1, \\ c, & \text{otherwise}. \end{cases} $$

- for an And-chart $c = [s : [p_1, \ldots, p_n]]$, and a transition τ,

$$ \text{res}(\tau, c) = \begin{cases} c, & \text{if } \tau = \tau_{1 \cdot \ldots \cdot \tau_k} \land k \leq m, \tau_k \in T(c), \\ c, & \text{otherwise}. \end{cases} $$

where $c = [q_1, p_1, \ldots, q_n, p_n]$ is the statechart obtained from c by replacing p_i by q_i for $1 \leq i \leq n$, $q_{i_k} = \text{res}(\tau_k, p_{i_k})$, for $1 \leq k \leq m$, and $q_{i_k} = p_{i_k}$, for $m < k \leq n$.

The definition of L is split into three cases in accordance with the type of the source statechart.

Definition 5 (Mapping function L) The function $L : SC \rightarrow$ Verilog

maps any statechart description into a corresponding Verilog process. It keeps unchanged the set of variables employed by the source description, i.e.,

$$ \forall c \in SC \Rightarrow \text{vars}(L(c)) = \text{vars}(c) $$

and it is inductively defined as follows:

- For a statechart $c = [s]$ constructed by Basic, L maps it into an Idle program sink which can do nothing but let time advance, i.e.,

$$ L(c) = \text{sink} $$

- For a statechart $c = [s : [p_1, \ldots, p_n]]$ constructed by And, L maps it into a parallel construct in Verilog,

$$ L(c) = P \mid 1 \leq k \leq n \ L(p_k) $$

- For a statechart $c = [s : [p_1, \ldots, p_n], p, T]$ constructed by Or, we define L by exhaustively figuring out the first possible transitions of c if any, otherwise it sinks.

$$ L(c) = \begin{cases} \text{sink}, & \text{if } T(c) = \emptyset, \\ P, & \text{otherwise}. \end{cases} $$

where

$$ P = \begin{cases} \text{sink}, & \text{if } \text{or-depth}(c) \leq 0, \\ \{ (h_i, \text{tg}(h_i), \text{tg}(h_i)) \mid h_i \in T(\text{active}^i(c)) \land \text{src}(\tau_k) = \text{active}^i(c) \land \tau_k = T(\text{active}^i(c)) \} \cup P, & \text{otherwise}. \end{cases} $$

with $P = \emptyset$.
and

\[\text{active}^0(c) = \mathcal{E}_1 \text{ c, active}^1(c) = \mathcal{E}_2 \text{ active}(c) \]
\[\text{active}^{i+1}(c) = \mathcal{E}_y \text{ active}^i(c) \]

The input guard \(\mathcal{E}_y \) comprises the overall trigger events of \(\tau_k \), which has the form \(\mathcal{E}_1 \& \ldots \& \mathcal{E}_n \), where \(\mathcal{E}_1 \) are events from \(\text{trig}^0(\tau_k) \), whereas \(\mathcal{E}_n \) are events out of \(\text{trig}^m(\tau_k) \).

Due to the priority mechanism of Statecharts, an enabled transition \(\tau_k \) in an inner level \((k) \) can occur only when no transitions from any outer level \((0, \ldots, k-1) \) are enabled. The part \((\&_{1\leq i \leq k} \mathcal{E}_i) \) is used to denote this condition.

The output guard \(\mathcal{E}_y \) is the overall action performed by \(\tau_k \), which has the form \(\rightarrow \mathcal{E}_y \@ (x = v) \), where \(\mathcal{E}_y \) comprises all abstract events out of \(\text{act}^i(\tau_k) \), and the assignment action \(x = v \) is from \(\text{act}^m(\tau_k) \).

For each statechart, we always assume each of its variables has bounded range, and the set of possible events is finite, which implies that the set of its configurations is finite. Therefore, the set of configurations (under transition relation) forms a well-founded quasi order, which indicates the mapping function \(L \) is terminating.

The following example deals with the transformation of statecharts in Fig. 2.

Example 1 The statechart (a) in Fig. 2 can be described as:

\[p = [s : [p_1, p_2], p_1, \{ \tau_1, \tau_2 \}] \]

where \(\tau_i = \mathcal{E}_1 \ (p_1, \{ e \}, \emptyset, true, p_{i-1}) \), \(i = 1, 2 \).

After applying the mapping function \(L \) onto it, the statechart (a) becomes the following process:

\[\mu X \bullet \ (e \ (e \ X)) \]

which does nothing but just waits to be fired by an event \(e \) from the environment.

The statechart (b) can be described as:

\[q = [s : [q_1, q_2]] \]
\[q_1 = [s_1 : [p_3, p_4], p_3, \{ \tau_3 \}] \]
\[q_2 = [s_2 : [p_5, p_6, p_3], p_5, \{ \tau_3, \tau_5 \}] \]

where \(\tau_3 = (q_3, \{ a, b \}, \{ e \}, true, p_4) \)
\(\tau_4 = (q_3, \{ b, c \}, \{ f \}, true, p_6) \)
\(\tau_5 = (q_3, \{ e \}, \{ g \}, true, p_7) \)

It is mapped into the following parallel construct:

\[(a \& b \& c \& \ldots \& sink) || ((e \& \ldots \& g \& \ldots \& sink) || (b \& c \& \ldots \& f \& \ldots \& sink)) \]

where the two parallel processes are mapped from \(q_1 \) and \(q_2 \), respectively.

Example 2 The statechart in Fig. 3 is more complicated than those in Fig. 2. It is described by:

\[p = [s : [p_1, p_{10}], p_1, \{ t_1 \}] \]
\[p_1 = [s_1 : [p_2, p_{10}], p_2, \{ t_2, t_3 \}] \]
\[p_2 = [s_2 : [p_3, p_4]] \]
\[p_3 = [s_3 : [p_5, p_6], p_5, \{ t_4 \}] \]
\[p_4 = [s_4 : [p_7, p_8], p_7, \{ t_5 \}] \]
\[p_{10} = [s_{10} : [p_1, p_2], p_{11}, \{ t_6, t_7 \}] \]

![Fig. 3 A more complicated statechart](image)

where

\[t_1 = (p_1, \{ e \}, \{ @ (y = 0) \}, true, p_{10}) \]
\[t_2 = (p_1, \{ \emptyset \}, \emptyset, \{ x > 0 \}, p_2) \]
\[t_3 = (p_2, \{ d \}, \{ (x = x - 1) \}, true, p_3) \]
\[t_4 = (p_5, \{ b \}, \{ e \}, true, p_6) \]
\[t_5 = (p_7, \{ a \}, \emptyset, true, p_8) \]
\[t_6 = (p_1, \{ e \}, \{ @ (y = y + 1) \}, true, p_{12}) \]
\[t_7 = (p_1, \{ f \}, \{ @ (y = y + 1) \}, true, p_{12}) \]

After applying \(L \) onto it, we obtain the following recursive process:

\[\mu X \bullet \ (Q \ | \ P) \]
\[Q = \mathcal{E}_1 \epsilon \@ (y = 0) \ | \ (a \& b \& \cdots \& \epsilon \& \cdots \& (a \& b \& \cdots \& \epsilon \& \cdots \& \epsilon) \ | \ (Q \ | \ P) \]
\[Q = \mathcal{E}_2 \epsilon \@ (y = 10) \ | \ (Q \ | \ P) \]

where \(Q = \mathcal{E}_1 \epsilon \@ (y = 0) \ | \ (Q \ | \ P) \)
\(Q = \mathcal{E}_2 \epsilon \@ (y = 10) \ | \ (Q \ | \ P) \)
\((a \& b \& \cdots \& \epsilon \& \cdots \& \epsilon) \ | \ (Q \ | \ P) \)
\((Q \ | \ P) \)

Let us illustrate a more practical example: a simple remote controller for an air-conditioner.

Example 3 Part of the specification for an air-conditioner remote controller is presented in Fig. 4. It is composed of five orthogonal components namely \(\text{Fan}, \text{Temperature}, \text{Timer}, \text{TempDisplay}, \) and \(\text{TimerDisplay} \). They will be respectively mapped to Verilog programs \(p\text{Fan}, p\text{Temperature}, p\text{Timer}, p\text{TempDisplay}, \) and \(p\text{TimerDisplay} \).

After applying the mapping function \(L \) to the statechart in Fig.4, we obtain the following target program \(pon \):

\[pon = \mathcal{E}_1 p\text{Fan} \ | \ p\text{Temperature} \]
\[p\text{Temperature} \ | \ p\text{Timer} \ | \ p\text{TempDisplay} \ | \ p\text{TimerDisplay} \]

The five component programs are respectively:

\(p\text{Fan} = \mathcal{E}_1 \mu X \bullet (\text{bfan} (\text{bfan} (\text{bfan} X))) \)

\(p\text{Temperature} = \mathcal{E}_1 \mu X \bullet \left(\left(\left(\left(v < 28 \& \epsilon \text{Incr} \& @ (v = v + 1) \right) X \right) \ | \ \left(\left(v > 16 \& \epsilon \text{Decr} \& @ (v = v - 1) \right) X \right) \ | \ (v > 16) \& \epsilon \text{Incr} \& @ (v = v + 1) \right) X \right) \)

\(p\text{Timer} = \mathcal{E}_1 \mu X \bullet (\text{btimer} \& \rightarrow \text{timeron} \ | \ P) \)
where

\[P = \mu Y \cdot \begin{cases} ((t < 8) \& hInc\&\@ (t = t + 1)) Y \\ ((t > 1) \& hDecr\&\@ (t = t - 1)) Y \\ \text{timer} \end{cases} \]

\[Q = \mu Z \cdot \begin{cases} ((t < 8) \& hInc\&\@ (t = t + 1)) Z \\ ((t > 1) \& hDecr\&\@ (t = t - 1)) Z \\ \text{timer} \end{cases} \]

\[p\text{TempDisplay} = \mu X \cdot \begin{cases} ((v > dv) \& \@ (dv = v)) X \\ ((v < dv) \& \@ (dv = v)) X \\ \text{timer} \end{cases} \]

\[p\text{TimerDisplay} = \mu X \cdot \mu Y : \nu X \cdot \begin{cases} ((t > dt) \& \@ (dt = t)) Y \\ ((t < dt) \& \@ (dt = t)) Y \\ \text{timer} \end{cases} \]

4.2 Correctness

The following theorem shows that the mapping function from Statecharts into Verilog is a homomorphism between the two formalisms.

Theorem 1 (Homomorphism) Given any statechart \(C \) and any of its possible transitions \(\tau \) which leads to statechart \(C' \), there exists a Verilog transition \(I \) for \(L(C) \) which arrives at \(P' \), such that \(P' = L(C) \); on the other hand, for any Verilog transition of \(L(C) \) leading to \(P' \), there exists a transition in Statecharts from \(C \) to \(C' \), such that \(L(C') = P' \), as illustrated in Fig. 5.

Proof By case analysis on the type of \(C \).

1. \(C = \llbracket \alpha \rrbracket \) is constructed by Basic.

 What \(C \) can do is to perform the clock tick and remains as \(C \) after the transition. On the other hand, from Definition 5 we know \(L(C) = \text{sink} \), which does nothing but performs the clock tick and remains as sink after that.

\[C \xrightarrow{t} C'

\[L \]

\[P \]

\[P' \]

\[2. C = \llbracket s :\{p_1, \ldots, p_n\}, T \rrbracket \]

In case that \(T^*(C) = \emptyset \), it can be proved similar to the first case. Now suppose \(T^*(C) \neq \emptyset \), \(C \) can (1) perform a transition \(\tau \in T(\text{active}^k(C)) \) for some \(k \geq 0 \) in case that all transitions of outer levels (if any) are not available, which changes the active state of \(\text{active}^k(C) \) from its source state to its target state and results in \(\text{reset}(\tau, C) \); (2) otherwise, it can take a clock tick and remain its state. From Definition 5 of \(L \), we know that \(L(C) \) has the form \(\llbracket (g, P) \rrbracket \). If (1) occurs, \(g \) is fired, from the semantics of Verilog, such a program can perform the corresponding transition and become \(P' \), otherwise it can perform the clock tick transition. From the definition of \(L \), it is straightforward that \(P' = L(\text{reset}(\tau, C)) \). The second part can be proved similarly from the definition of \(L \).

3. \(C = \llbracket s :\{p_1, \ldots, p_n\} \rrbracket \)

 is constructed by And.

 From Definition 5, we know

\[L(C) = L(p_1) \parallel \cdots \parallel L(p_n) \]

Given any possible transition \(\tau \in T(C) \), we assume \(\tau = \&_{1 \leq k \leq m} \tau_k \), where \(\tau_k \in T^*(p_k) \), without loss of generality. If \(\tau \) can be performed at the current environment, from rule 5, we know that \(\tau_k \), for \(1 \leq k \leq m \), are ready to take place and orthogonal components other than \(p_1, \ldots, p_m \) do not have available transitions. This implies all processes \(L(p_1), \ldots, L(p_m) \) can take the transition corresponding to \(\tau_1, \ldots, \tau_m \) respectively in the current environment, whereas oth-
ers can not. From the operational semantics of parallel construct of Verilog, a parallel transition corresponding to \(\tau \) can take place and after the transition the program becomes
\[
P_1 \parallel \cdots \parallel P_n
\]
where
\[
P_i = \begin{cases}
L(\text{resc}(\tau, p_i)), \text{ for } 1 \leq i \leq m, \\
L(p_i), \text{ otherwise.}
\end{cases}
\]

It exactly accords with \(L(\text{resc}(\tau, C)) \). The case for a clock tick transition is trivial.
The second part is also straightforward, since any transition of the result parallel construct \(L(C) \) in Verilog either involves several threads or a single thread. From the definition of \(L \), we can conclude, in either case, there exists a corresponding Statecharts transition for \(C \), which yields \(C' \) and \(L(C') = P' \) holds.

The following theorem shows the soundness of the mapping function.

Theorem 2 (Soundness) The mapping function \(L \) in Definition 5 transforms any specification in Statecharts into a Verilog program with the same observable behaviour as the original chart.

Proof In addition to the results from Theorem 1, we need to show that, given a statechart \(C \) and its image \(L(C) \) in Verilog, any possible pair of their corresponding steps (a statechart transition and a Verilog transition), starting from the same execution environment (the same \(\sigma \) and \(E \) in the corresponding configurations), consume the same set of events, generate the same set of events, and bring the updates of data state into accord. These follow directly from the construction of the mapping function \(L \).

5.2 Hardware/Software Partitioning Framework

In this section, we introduce our hardware/software partitioning framework. We depict source language and investigate the underlying target hardware-software architectures.

5.2.1 The Source Language

The source language we adopt is a sequential subset of Verilog. For clarity, we list the syntax as below.

\[
S ::= AC \quad (\text{primitive command}) \\
\quad | \quad S; S \quad (\text{sequential composition}) \\
\quad | \quad S < b > S \quad (\text{conditional}) \\
\quad | \quad S \quad (\text{non-deterministic choice}) \\
\quad | \quad b * S \quad (\text{iteration}) \\
\quad | \quad (g S) \quad (\text{guarded choice})
\]

where

\[
AC ::= PC (\text{defined in section 3}) \\
\quad | \quad (v := e)_n \quad (\text{timing assignment}) \\
\quad | \quad \langle S \rangle \quad (\text{specific block})
\]

The assignment statement with time constraint \((v := e)_n \) does not appear explicitly in Verilog’s syntax introduced in section 3, but it is in fact a well-formed Verilog program since
\[
(v := e)_n = \Gamma_{0 \leq k < n} \ (v := \#(e))
\]

Moreover, the block notation in \(\langle S \rangle \) has no semantical meanings.

Based on the customer’s requirements, the programmer can work out the Statecharts specification and pass it to the mapping function. A Verilog specification in the above source language is then generated which will be taken as the input for the partitioning process. Alternatively, the programmer can also derive directly the kernel specification for the system to be designed in the above source language, if he/she is more familiar
with Verilog than Statecharts. After appropriate hard-
ware/software marking and allocation, a marked source
program is then passed to the partitioning process.

5.2.2 The Underlying Target Architecture

The underlying target hardware and software compo-
nents from the kernel specification will own specially-
chosen forms. We adopt an event-trigger mechanism to
synchronize behaviors between hardware and software,
and use a shared-variable mechanism to cope with in-
teractions between hardware and software.

The kernel part of the software specification is a mem-
ber of $CP(r,a)$, a subset of Verilog programs, which is
constructed by the following inductive rules.

1. An event control insensitive process not contain-
ing variables r,a;
2. $\rightarrow \eta; C; \eta_0$, where C is a member of $CP(r,a)$ not men-
tioning r,a;
3. $C_1; C_2$, or $C_1 \triangleq C_2$, or $C_1 \cap C_2$, or $(g_1 C_1) \mid (g_2 C_2)$,
 where $C_1, C_2, g_1, g_2 \in CP(r,a)$;
4. $b \ast C$, where $C \in CP(r,a)$.

We introduce another set $CP_\varepsilon(r,a)$ comprising those
processes in $CP(r,a)$ not mentioning variable ε.

As mentioned in last section, our splitting task is di-
vided to two steps. Firstly, we design a collection of al-
gebraic rules to refine any source program S (the kernel
specification for the system) to its hardware/software de-
composition

$$C_0 \parallel D_0$$

where the software component C_0 is of the form $(C; \rightarrow
\eta_0), C$ is a member of $CP_\varepsilon(r,a)$, the special event $\rightarrow \eta_k$
is adopted for the purpose of synchronization between
hardware and software, and the hardware component D_0
is subject to the following equation:

$$D_0 = \mu X \bullet ((\eta_k M; \rightarrow \eta_k; D_0) \parallel (\eta_k \text{ skip}))$$

where $M = \text{def} \quad \text{case \quad (id \quad (p_1 \quad M_1) \ldots \quad (p_n \quad M_n)}$
is a case construct not containing r,a,ε.

We denote as $DP_\varepsilon(r,a)$ the set of processes with the
same form as D_0.

To avoid any possible loss of signals at the moment
when the fixed point construct (equation) is expanded,
we naturally claim that an abstract event only takes
place at the moment when there’s no other active events
at all.

Secondly, given the kernel specification S of a system,
rather than considering its hardware/software partition,
we deal with the decomposition for the whole system’s
specification

$$\Psi_f(S) = \text{def} \quad \text{always \quad (\eta_k S; \rightarrow \eta_f)}$$

which is driven by the environmental process:

$$Env = \text{def} \quad \text{always \quad (\rightarrow \eta_k; \eta_f)}$$

and derive the partitioning of $\Psi_f(S)$ under the environ-
ment Env as

$$\Psi_f(C) \parallel Env \parallel D$$

where

$$Q \parallel Env \parallel Q = \text{def} \quad P \parallel Env \parallel Q$$
The software component enjoys the form
\[\Psi_f^s(C) \equiv F \quad \text{always (} \eta_f C; \Rightarrow \eta_f) \]
where \(C \) is a process from \(CP(r, a) \); the hardware component \(D \) is of the form:
\[D \equiv F \quad \text{always (} \eta_h M; \Rightarrow \eta_h) \]

We denote as \(D P(r, a) \) the set of processes of the same form as \(D \).

The following theorem ensures the synchronized termination between the kernel hardware and software specifications.

Theorem 3 We have
\[(C_1; C_2; \Rightarrow \eta_h) \| D_0 = ((C_1; \Rightarrow \eta_h) \| D_0); ((C_2; \Rightarrow \eta_h) \| D_0) \]
for any \(C_1, C_2 \in CP(r, a) \) and \(D_0 \in DP(r, a) \). □

Proof By structural induction on \(C_1 \).

case 1 \(C_1 \) is event control insensitive and does not mention \(r \) or \(a \).

(1.1) \(C_1 \) is an atomic command.
\[C_1 = \top, \text{ the proof is trivial.} \]
\[C_1 = tg, \text{ where } tg \equiv @ (x := e) \text{ or } \eta_{nh} \text{ or } \# n, \]
\[LHS \equiv \{ (seq-6), (par-6), (guard-4) \} \]
\[= tg((C_2; \Rightarrow \eta_h) \| D_0) \quad \{ \text{Proposition 1} \} \]
\[= tg((\text{skip}; (C_2; \Rightarrow \eta_h) \| D_0)) \quad \{ \text{par-6, (iwar-4)} \} \]
\[= tg((\eta_h \| D_0); ((C_2; \Rightarrow \eta_h) \| D_0)) \quad \{ (seq-6), (par-6), (guard-4) \} \]
\[= RHS \]

(1.2) \(C_1 = S_1 \cap S_2 \)
\[LHS \equiv \{ (seq-3) \} \]
\[= ((S_1; C_2; \Rightarrow \eta_h) \cap (S_2; C_2; \Rightarrow \eta_h)) \| D_0 \quad \{ \text{par-10} \} \]
\[= ((S_1; C_2; \Rightarrow \eta_h) \| D_0) \cap ((S_2; C_2; \Rightarrow \eta_h) \| D_0) \quad \{ \text{hypothesis} \} \]
\[= (((S_1; \Rightarrow \eta_h \| D_0); ((S_2; C_2; \Rightarrow \eta_h) \| D_0)) \cap (((S_2; \Rightarrow \eta_h \| D_0); (C_2; \Rightarrow \eta_h) \| D_0)) \quad \{ (seq-3) \} \]
\[= \quad \{ \text{hypothesis} \} \]
\[= (((S_1; \Rightarrow \eta_h \| D_0); (S_2; \Rightarrow \eta_h) \| D_0)); ((C_2; \Rightarrow \eta_h) \| D_0)) \quad \{ (seq-3) \} \]
\[= RHS \]

(1.3) \(C_1 = S_1 \times b \times S_2 \)
\[LHS \equiv \{ (seq-4) \} \]
\[= ((S_1; C_2; \Rightarrow \eta_h) \times b \times (S_2; C_2; \Rightarrow \eta_h)) \| D_0 \quad \{ \text{par-9} \} \]
\[= ((S_1; C_2; \Rightarrow \eta_h) \| D_0) \times b \times ((S_2; C_2; \Rightarrow \eta_h) \| D_0) \quad \{ \text{hypothesis, (seq-4)} \} \]
\[= ((S_1; \Rightarrow \eta_h \| D_0) < b > ((S_2; \Rightarrow \eta_h) \| D_0)); ((C_2; \Rightarrow \eta_h) \| D_0) \quad \{ (par-9), (seq-4) \} \]
\[= RHS \]

(1.4) \(C_1 = \bigcap_{i \in I} (g_i; S_i) \)
\[LHS \equiv \{ (seq-5) \} \]
\[= (\bigcap_{i \in I} (g_i; S_i; C_2; \Rightarrow \eta_h))) \| D_0 \quad \{ \text{par-6, (guard-4)} \} \]
\[= \bigcap_{i \in I} (g_i; (S_i; C_2; \Rightarrow \eta_h) \| D_0) \quad \{ \text{hypothesis} \} \]
\[= \quad \{ \text{hypothesis} \} \]

Then
\[F^n(\bot) = g \quad \text{always (} \eta_h M; \Rightarrow \eta_h) \]

The following corollary is directly from theorem 3.

Corollary 1 Given \(C \in CP(r, a) \) and \(D_0 \in DP(r, a) \), we have
\[(b \times C; \Rightarrow \eta_h) \| D_0 = b \times ((C; \Rightarrow \eta_h) \| D_0) \]
□
5.3 Hardware/Software Partitioning

This section specifies our hardware/software partitioning process in detail. As mentioned in section 5.1, the task is divided into two steps: hardware/software partitioning for kernel specification; decomposition of the whole system's specification. The process will be investigated in detail in the following two subsections.

5.3.1 Syntax-Based Splitting Rules for Kernel Specification

This subsection is meant to design program partitioning rules. We explore a set of splitting rules which demonstrate how to construct hardware and software parts of a program construct from those of its constituents. Meanwhile, we show how to split atomic commands.

We introduce a predicate \(\text{Split} \) which plays a vital role in formalizing the splitting rules.

Definition 6 (Split) Let \(V = \{ r, \alpha, \varepsilon, \text{id} \} \). Given a program \(S \) in the source language, its hardware/software partition \((C_i \rightarrow \eta_k) \), \(D^0 \) is specified by the following predicate:

\[
\text{Split}_v(S, C, D^0) = \begin{cases}
\text{true} & \text{if } (S \subseteq (C_i \rightarrow \eta_k) \| D^0) \land (C \in CP_{(r, \alpha)}) \land (D^0 \in DR_{(r, \alpha)}) \land (V \subseteq \text{Var}(C_i \rightarrow \eta_k) \cap \text{Var}(D^0)) \land (V \cap \text{OccVar}(S) = \emptyset)
\end{cases}
\]

where \(\text{OccVar}(P) \) denotes the set of variables occurred in the program \(P \).

We design two set of syntax-based splitting rules in two different styles: the bottom-up style and the top-down style. The programmer can choose either of them to conduct hardware/software partitioning.

The Bottom-Up Splitting Rules The bottom-up approach builds the hardware component from a marked program in one step before partitioning, i.e., all services the hardware should provide are integrated at the beginning. However, it constructs the software component from those of its constituents using the following rules.

Bottom-Up Rule for Sequential Composition

\[
\text{Split}_v(S_i, C_i, D^0), i = 1, 2 \quad \text{Var}(S_1) = \text{Var}(S_2)
\]

\[
\text{Split}_v(S_1, S_2, C_1; C_2, D^0)
\]

Proof \(S_1 \sqcup b \triangleright S_2 \quad \text{is monotonic} \)

\[
\begin{align*}
&\subseteq ((C_i \rightarrow \eta_k) \| D_0) \triangleright (C_j \rightarrow \eta_k) \| D_0) \quad \{ \text{theorem 3} \}
\end{align*}
\]

\[
((C_1 \rightarrow \eta_k) \| D_0) \triangleright (C_2 \rightarrow \eta_k) \| D_0)
\]

Bottom-Up Rule for Conditional

\[
\text{Split}_v(S_i, C_i, D^0), i = 1, 2 \quad \text{Var}(S_1) = \text{Var}(S_2)
\]

\[
\text{Split}_v(S_1 < b \triangleright S_2, C_1 < b \triangleright C_2, D^0)
\]

Proof \(S_1 < b \triangleright S_2 \quad \{ \text{conditional is mono.} \}

\[
\begin{align*}
&\subseteq ((C_1 \rightarrow \eta_k) \| D_0) < b \triangleright ((C_2 \rightarrow \eta_k) \| D_0) \quad \{ \text{par-9} \}
\end{align*}
\]

\[
((C_1 \rightarrow \eta_k) < b \triangleright (C_2 \rightarrow \eta_k)) \| D_0 \quad \{ \text{seq-4} \}
\]

\[
=((C_1 < b \triangleright C_2) \rightarrow \eta_k) \| D_0
\]

Bottom-Up Rule for Non-Deterministic Choice

\[
\text{Split}_v(S_i, C_i, D^0), i = 1, 2 \quad \text{Var}(S_1) = \text{Var}(S_2)
\]

\[
\text{Split}_v(S_1 \cap S_2, C_1 \cap C_2, D^0)
\]

Proof \(S_1 \cap S_2 \quad \{ \cap \text{ is mono.} \}

\[
\begin{align*}
&\subseteq (C_1 \rightarrow \eta_k) \cap (C_2 \rightarrow \eta_k) \| D_0 \quad \{ \text{par-8} \}
\end{align*}
\]

\[
((C_1 \rightarrow \eta_k) \cap (C_2 \rightarrow \eta_k)) \| D_0 \quad \{ \text{seq-3} \}
\]

Bottom-Up Rule for Guarded Choice

\[
\text{Split}_v(S_i, C_i, D^0), i = 1, 2 \quad \text{Var}(S_1) = \text{Var}(S_2)
\]

\[
\text{Split}_v((g_1 S_1) \triangleright (g_2 S_2), (g_1 C_1) \triangleright (g_2 C_2), D^0)
\]

Proof \((g_1 S_1) \triangleright (g_2 S_2) \quad \{ \text{is mono.} \}

\[
\begin{align*}
&\subseteq ((g_1 (C_1 \rightarrow \eta_k) \| D_0)) \triangleright ((g_2 (C_2 \rightarrow \eta_k) \| D_0)) \quad \{ \text{par-6}, \text{guard-4} \}
\end{align*}
\]

\[
((g_1 (C_1 \rightarrow \eta_k)) \triangleright (g_2 (C_2 \rightarrow \eta_k))) \| D_0 \quad \{ \text{seq-5} \}
\]

Bottom-Up Rule for Iteration

\[
\text{Split}_v(S_i, C_i, D^0)
\]

\[
\text{Split}_v(b * S, b * C, D^0)
\]

Proof \(b * S \quad \{ \text{loop operator is mono.} \}

\[
\begin{align*}
&\subseteq b ((C_i \rightarrow \eta_k) \| D_0) \quad \{ \text{corollary 1} \}
\end{align*}
\]

\[
(b * C_i \rightarrow \eta_k) \| D_0
\]

The Top-Down Splitting Rules In the top-down style, both the hardware and software components of the source program are integrated from those of its constituents.

Before investigating the top-down splitting rules, we introduce the notion of mergable on hardware components from \(DP_{(r, \alpha)} \).

Definition 7 Let

\[
D^i =_{df} \mu X \cdot ((\eta_k M_i^i \rightarrow \eta_k; X) \| (\eta_k \text{ skip}))
\]

where

\[
M^i =_{df} \text{ case (id)} (p_1^i M_1^i) \ldots (p_n^i M_n^i), \quad \text{for } i = 1, 2
\]

\(D^1 \) and \(D^2 \) are said to be mergable, denoted by

\[
\text{mergable}(D^1, D^2)
\]

if

\[
\text{Var}(D^1) = \text{Var}(D^2), \text{and (p}_i^1 = p_j^2 \text{) implies } M^i = M^j, \text{ for } 1 \leq i \leq n_1, 1 \leq j \leq n_2.
\]
In such a case, we define
\[
D = \text{int}(D^1, D^2) \Rightarrow_{df} \mu X \cdot ((\eta_e : M ; \rightarrow \eta_k ; X) \upharpoonright (\eta_e \text{ skip}))
\]
where \(M =_{df} \) case \((id := t_1, M_1) \ldots (t_r, M_r)\),
and \(\{ t_1, \ldots, t_r \} = \{ p_1^1, \ldots, p_{n_1}^1 \} \cup \{ p_1^2, \ldots, p_{n_2}^2 \} \),
and \(\{ M_1, \ldots, M_r \} = \{ M_1^1, \ldots, M_{n_1}^1 \} \cup \{ M_1^2, \ldots, M_{n_2}^2 \} \).

First of all, we present a basic rule for hardware augmentation, from which and the bottom-up rules in the former section we directly obtain the corresponding top-down rules in all cases.

Rule for Hardware Augmentation

\[
\begin{align*}
\text{Split}_V(S, C, D) \\
\text{merge}_{\text{int}}(D, D')
\end{align*}
\]

Proof The proof can be reached in the Appendix. \(\square\)

The following top-down splitting rules are then straightforward based on the corresponding bottom-up rules and the rule for hardware augmentation above.

Top-Down Rule for Sequential Composition

\[
\begin{align*}
\text{Split}_V(S_1; C_1, D_1) \\
\text{Var}(S_1) = \text{Var}(S_2) \\
\text{merge}_{\text{int}}(D_1, D_2)
\end{align*}
\]

Top-Down Rule for Conditional

\[
\begin{align*}
\text{Split}_V(S_1; C_1, D_1) \\
\text{Var}(S_1) = \text{Var}(S_2) \\
\text{merge}_{\text{int}}(D_1, D_2)
\end{align*}
\]

Top-Down Rule for Non-Deterministic Choice

\[
\begin{align*}
\text{Split}_V(S_1, C_1, D_1) \\
\text{Var}(S_1) = \text{Var}(S_2) \\
\text{merge}_{\text{int}}(D_1, D_2)
\end{align*}
\]

Top-Down Rule for Guarded Choice

\[
\begin{align*}
\text{Split}_V(S_1, C_1, D_1) \\
\text{Var}(S_1) = \text{Var}(S_2) \\
\text{merge}_{\text{int}}(D_1, D_2)
\end{align*}
\]

Splitting Atomic Commands The details for specific blocks’ partitioning are similar to discussions in [24].

For the timed assignment \((v := f(x, c))_n\), we only concentrate on the cases where both the hardware and software participate in the update of \(v\).

Fig. 7 Hardware/Software Partition for the Whole System

Case 1: \(f\) is a busy function, and \(x\) is allocated to hardware.

\[
\text{Split}_H(S = ((v := f(x, c))_n), C, D), \quad \text{where}
\]

\[
\begin{align*}
C =_{df} ((id := 1)_0; \rightarrow \eta_e; \eta_s; (v := ly)_0), \quad \text{and}
D =_{df} \mu X \cdot ((\eta_e \text{ case } (id) (1 (ly := f(x, c)_n); \rightarrow \eta_k; X) \upharpoonright (\eta_e \text{ skip})).
\end{align*}
\]

Case 2: \(f\) is a busy function, but \(x\) is allocated to software.

\[
\text{Split}_H(S = ((v := f(x, c)_n), C, D), \quad \text{where}
\]

\[
\begin{align*}
C =_{df} ((id := 1)_0; (lx := x)_0; \rightarrow \eta_e; \eta_s; (v := ly)_0), \quad \text{and}
D =_{df} \mu X \cdot ((\eta_e \text{ case } (id) (1 (ly := f(x, c)_n); \rightarrow \eta_k; X) \upharpoonright (\eta_e \text{ skip})).
\end{align*}
\]

Case 3: \(f\) is not a busy function, but \(x\) is allocated to hardware.

\[
\text{Split}_H(S = ((v := f(x, c)_n), C, D), \quad \text{where}
\]

\[
\begin{align*}
C =_{df} ((id := 1)_0; \rightarrow \eta_e; \eta_s; (v := f(x, c)_n), \quad \text{and}
D =_{df} \mu X \cdot ((\eta_e \text{ case } (id) (1 (lx := x)_0; \rightarrow \eta_k; X) \upharpoonright (\eta_e \text{ skip})).
\end{align*}
\]

5.3.2 Deriving Hw/Sw Partition for an Environment-Driven System

Now we investigate hardware/software partitioning for the whole system. The partitioning process is illustrated in Fig. 7.

As discussed in sec. 5.2, suppose the whole system is specified by

\[
\Psi_f(S) =_{df} \text{ always } (\eta_e S; \rightarrow \eta_f)
\]

which is driven by environment process

\[
Env =_{df} \text{ always } (\rightarrow \eta_e; \eta_f)
\]

where \(S\) is the kernel specification for the system to be designed, and \(\eta_e\) is the start signal, \(\eta_f\) is the finish signal.

For a kernel specification \(S\), suppose we have obtained its hardware/software decomposition as follows
by applying those rules in section 5.3.1:

\[\text{Split}_V(S, C, D) \]

where \(V = \{ r, a, e, id \} \),

and \(D = \mu X \cdot (\eta_M; \eta_n: X) \|
(\eta_k \text{ skip}) \).

We design the following rule to generalize the rule for the partition of the whole system.

System Partitioning Rule

\[\text{Split}_V(S, C, D) \]

\[\text{Part}(\Psi(f)(S), \Psi(f)(C), \Psi(f)(M)) \]

where \(\text{Part}(S, C, D) \equiv ((S \parallel \text{Env}_n) \subseteq (C \parallel D \parallel \text{Env}_n) \)

\[\Psi(f)(P) = \forall \text{ always } (\eta_n; P \rightarrow \eta_n) \]

\[\text{Env}_n = \forall \text{ always } (\eta_n; \eta_f) \]

Proof We define \(\{ \text{always}_n(S) \} \) as follows, for all \(n \geq 0 \):

\[\text{always}_0(S) = \forall \]

\[\text{always}_n(S) \equiv \forall \text{ S}; \text{always}_n(S) \]

then by law (always-1), we have

\[\text{always}_n(S) = \bigcup_{n \geq 0} \text{always}_n(S) \]

By continuity of the parallel operator and law (seq-2), we only need to prove, for all \(n \geq 0 \),

\[\Psi(f)(S)_n \| \text{Env}_n \subseteq \forall \text{ always } (\eta_n; P \rightarrow \eta_n) \]

\[\text{Env}_n \equiv \forall \text{ always } (\eta_n; \eta_f) \]

By mathematical induction on \(n \).

1. Basic step \((n = 0) \).

\[\Psi(f)(S)_0 \| \text{Env}_0 \]

\[\subseteq (\forall \rightarrow \eta_0) \| \top \] \((\text{seq-2}) \)

\[= \forall \text{ always } (\eta_0; \text{Env}_0) \] \((\text{par-1}) \)

2. Inductive step \((n \rightarrow n + 1) \).

We first prove, for all \(n \geq 0 \),

\[\Psi(f)(C)_n \rightarrow \eta_k \] \(\text{Env}_n = \forall \text{ always } (\eta_n; \eta_k) \]

By an induction on \(n \).

\(n = 0 \). It’s straightforward by law (par-2) and (seq-2).

\[\rightarrow n + 1 \]

\[\Psi(f)(C)_{n+1} \rightarrow \eta_k \] \(\text{Env}_{n+1} \)

\[\subseteq (\forall \rightarrow \eta_k) \| \top \] \((\text{par-2}) \)

\[= \forall \text{ always } (\eta_k; \text{Env}_{n+1}) \]

Lemma 1

\[= \text{ Env}_n \]

\[\subseteq (\forall \rightarrow \eta_k) \| (\eta_k; \text{Env}_n) \]

\[= \text{ Env}_n \]

\[\subseteq (\forall \rightarrow \eta_k) \| (\eta_k; \text{Env}_n) \]

\[= \forall \text{ always } (\eta_n; \eta_k) \]

\[\text{always}_{n+1}(C) \rightarrow \eta_k \]

Then, we have

\[\Psi(f)(S)_{n+1} \| \text{Env}_{n+1} \]

\[\{ \text{par-2}, (\text{par-4}), \text{Proposition 1} \}

\[= (S; \rightarrow \eta_n; \Psi(f)(S)_n) \| (\eta_n; \text{Env}_n) \]

\[= S; ((\rightarrow \eta_n; \Psi(f)(S)_n) \| (\eta_n; \text{Env}_n)) \]

\[\{ \text{par-2}, (\text{par-4}), \text{Proposition 1} \}

\[= S; (\Psi(f)(S)_n \| \text{Env}_n) \]

\[\{ \text{precondition, is mono.} \}

\[\subseteq ((C; \rightarrow \eta_k) \| D); (\Psi(f)(C)_n \rightarrow \eta_k) \| D \parallel \text{Env}_n) \]

\[\{ \text{hypothesis} \}

\[\subseteq ((C; \rightarrow \eta_k) \| D); ((\text{always } n(C); \rightarrow \eta_k) \parallel D \parallel \text{Env}_n) \]

\[\{ (1) \}

\[= ((C; \rightarrow \eta_k) \| D); (\text{always } n(C); \rightarrow \eta_k) \parallel D \]

\[\{ \text{Theorem 3} \}

\[= (\text{always } n+1(C); \rightarrow \eta_k) \parallel D \]

\[\{ (1) \}

\[= (\Psi(f)(C)_{n+1}; \rightarrow \eta_k) \parallel D \parallel \text{Env}_{n+1} \]

\[\square \]

6 Related Work

Statecharts semantics Due to the involvedness of formal semantics for Statecharts, there have been so many related works that we can hardly discuss all here. Some of them are presented in [7; 15; 18; 19; 22; 30]. Many of these works adopt the simpler synchronous model. The work in [7] takes into account a very large subset of Statecharts, but the semantics is neither compositional nor formal. In contrast, our operational semantics is formal, compositional and supports asynchronous model.

Verilog semantics Although it is reported that Verilog has been widely used in industry (especially in United States) for years, its precise semantics has been ignored until recently. The results [12; 32; 33; 8] are all based on Gordon’s interpretation on simulation cycles [3]. A simple operational semantics is given in [12]. Zhu, Bowen and He [32; 33] investigate the consistency between Verilog’s operational and denotational semantics, while He [8] explores a program algebra for Verilog and its connection with both operational and denotational semantics. Most recently Zhu [31] provides a more complete investigation on unifying different semantic models for Verilog-like languages.

Linking Statecharts with other formalisms Some of related works on connecting Statecharts with other formalisms are presented in [1; 2; 20; 27; 29; 26]. Béguins et al. [1] and Seshia et al. [27] translate STATEMATE Statecharts to synchronous languages Signal and Esterel respectively, aiming to use supporting tools provided in the target formalisms for formal verification purposes. However, all these translations are based on the informal semantics [7] lacking correctness proofs. The authors of [2; 20] transform variants of Statecharts into hierarchical timed automata and use tools (UPPAAL, SPIN) to model check Statecharts properties. Also, [29] based on the denotational semantics [15] aims to connect a subset
of Statecharts with temporal logic FNILog for theoretically proving Statecharts' properties. More recently, a translation from Statecharts to B/AMN is reported in [12]. However, no correctness issue has been addressed. In comparison, the translation from Statecharts to Verilog in this paper aims at code generation for system design. Our mapping function is constructed based on formal semantics for both the source and target formalisms and has been proven to be semantics-preserving.

Algebraic approach to Hardware/software partitioning The algebraic approach advocated in this paper to verify the correctness of the partitioning process has been successfully employed in the ProCoS project. The original ProCoS project [11] concentrated almost exclusively on the verification of standard compiler of a high-level programming language based on Occam down to a microprocessor based on Transputer [10]. Sampaio showed how to reduce the compiler design task to program transformation [23]. Towards the end of the first phase of the project, Ian Page et al made rapid advance in the development of hardware compilation technique using an Occam-like language targeted towards FPGAs [21], and He Jifang et al provided a formal verification of the hardware compilation scheme within the algebra of Occam programs [9].

Some works have suggested the use of formal methods for the partitioning process [28; 24]. In [28], Silva et al provide a formal strategy for carrying out the splitting phase automatically, and present an algebraic proof for its correctness. However, the splitting phase delivers a large number of simple processes, and leaves the hard task of clustering these processes into hardware and software components to the clustering phase and the joining phase. Furthermore, additional channels and local variables introduced in the splitting phase increase the data flow between hardware and software components. In our former work [24], an algebraic approach is proposed to partition a specification into hardware and software in one step and as well verify the correctness of the partition process. However, that approach is based on algebraic laws of the high level communicating language Occam, which leaves rather a long distance to go through in hardware/software co-synthesis phase. In this paper, the distance has been shortened by adopting Verilog as the language.

7 Conclusion

In this paper we present a formal approach to hardware/software co-specification, starting from the Statecharts visual formalism. We have made the following main contributions:

- Compositional operational semantics for Statecharts. We have explored a compositional operational semantics to Statecharts which contains many powerful features that Statecharts owns, but proved to be difficult to be combined into a uniform formalism.
- A semantics-preserving linking between Statecharts and Verilog. We have defined a syntax-directed function to map Statecharts to Verilog programs. Based on the operational semantics for Statecharts and Verilog, we have proved the linking function is a semantics-preserving homomorphism.
- An algebraic approach to hardware/software partitioning in Verilog. We have worked out a collection of formal rules to split a specification (in Verilog) into hardware and software sub-specifications. The partitioning process has been proved sound using Verilog algebra. We adopt a sequential imperative subset of Verilog as our source language, and allow it to contain time constraints, so as to describe timing specification. We confine target hardware and software specifications in specially chosen subsets of Verilog, and use Verilog’s event-trigger mechanism to synchronize behaviors between them. Whereas, communications between hardware and software are based on Verilog’s shared variable mechanism, which will facilitate the subsequent hardware/software co-synthesis, and make it possible to adopt bus techniques to implement interactions between hardware and software. Moreover, this paper not only develops a collection of splitting rules to partition a source program into hardware and software components, but also discuss hardware/software partitioning for the whole system which takes the source program as its kernel specification. The system is specified by Verilog’s always constructs and its execution is driven by an environment process. Such systems widely exist in our daily life, *embedded systems* are of this kind. Developing a partitioning rule for such systems will be very helpful for us to investigate correctness-preserved design of embedded systems.

Acknowledgements The first part of the work was done when the first author was affiliated with Singapore-MIT Alliance, National University of Singapore. The second part of the work was done when the first author was doing his Ph.D in School of Mathematical Sciences, Peking University.

References

Appendix
Proof of Lemma 1
Proof (1). LHS
= var u,v \cdot ((\eta_v(P_2 || Q)) \rightarrow_\eta V((P || (\eta_v Q)))
= \{par-6\}
= \{guard-4\}
= \{par-6\}
= \{lvar-4\}
= \{Proposition 1\}
= RHS

(2). By structural induction on Q1.

(2.1) Q1 is an atomic command.

It is obvious when Q1 = stop or Q1 = .

Q1 = t_g, where t_g is one of the following forms
@((x := e), \rightarrow_\eta x_i, \#n)

We have
\[\text{LHS} = \text{var } u, v \cdot (t \cdot (P; Q)) \quad \{\text{par-6}\} \]
\[\text{RHS} \]
(2.2) \(Q_1 = S_1 \cap S_2 \).

\[\text{LHS} = \text{var } u, v \cdot (P || (S_1; Q) \cap (S_2; Q)) \quad \{\text{par-3}\} \]
\[\text{RHS} \]
(2.3) \(Q_1 = S_1 \sqsubseteq b \triangleright S_2 \).

\[\text{LHS} = \text{var } u, v \cdot (P || ((S_1; Q) \sqsubseteq b \triangleright (S_2; Q))) \quad \{\text{par-4}\} \]
\[\text{RHS} \]
(2.4) \(Q_1 = I_{i \in I} (g_i S_i) \).

\[\text{LHS} = \text{var } u, v \cdot (P || ((S_i; Q) \sqsubseteq b \triangleright (S_2; Q))) \quad \{\text{par-5}\} \]
\[\text{RHS} \]
(2.5) \(Q_1 = b \ast S \).

Let
\[F(X) = \text{def } (S; X) \sqsubseteq b \triangleright \text{skip},\]
For \(n \geq 0 \) we define
\[F^0 (\bot) = \text{def } \bot,\]
\[F^{n+1} (\bot) = \text{def } F(F^n (\bot)).\]

Then
\[\text{LHS} = \text{var } u, v \cdot (P || (\bigcup_{n \geq 0} F^{n+1} (\bot))) \quad \{\text{continuity } \}
\[\text{RHS} \]
(2.6) \(Q_1 = S_1 \cap S_2 \).

(2.6.1) \(S_1 \) is one of the following forms: \(S_{10} \cap S_{11}, S_{10} \sqsubseteq b \triangleright S_{11}, (g_1 S_{10}) \sqsubseteq (g_2 S_{11}) \). By laws (seq-3) (seq-5), and (seq-4) we can convert \(Q_1 \) to non-deterministic choice, conditional, and guarded-choice, respectively. It then follows from (2.2),(2.3), and (2.4).

(2.6.2) \(S_1 \) is an atomic command. It is straightforward when \(S_1 \) is \(\bot \) or \(\text{stop} \). Let us consider \(S_1 = t \).

\[\text{LHS} \quad \{\text{par-6}, \text{guard-4}\} \]
\[\text{RHS} \]
(2.6.3) \(S_1 = b \ast S \).

Similar to (2.5), we have
\[\text{LHS} = \text{var } u, v \cdot (P || (\bigcup_{n \geq 0} F^{n+1} (\bot))) \quad \{\text{continuity of } \}
\[\text{RHS} \]
(3.1) \(P_1 \) is an atomic command. The proof can be done by a structural induction on \(Q_1 \). Similar to the proof of (2).

(3.2) \(P_1 = S_1 \cap S_2 \).

\[\text{LHS} = \text{var } u, v \cdot (((S_1; P) || (S_2; P)) \cap (Q_1; Q)) \quad \{\text{par-3}\}
\[\text{RHS} \]
(3.3) \(P_1 = S_1 \sqsubseteq b \triangleright S_2 \).

\[\text{LHS} = \text{var } u, v \cdot (((S_1; P) \sqsubseteq b \triangleright (S_2; P)) \cap (Q_1; Q)) \quad \{\text{par-4}\}
\[\text{RHS} \]
(3.4) \(P_1 = I_{i \in I} (g_i S_i) \).

We first have
\[\text{LHS} \quad \{\text{seq-5}\}
\[\text{RHS} \]
Then, apply structural induction on \(Q_1 \). The proof is similar to the proof in (2).

(3.5) \(P_1 = b \ast S \).

Let
\[F(X) = \text{def } (S; X) \sqsubseteq b \triangleright \text{skip},\]
For \(n \geq 0 \) we define
\[F^0 (\bot) = \text{def } \bot,\]
\[F^{n+1} (\bot) = \text{def } F(F^n (\bot)).\]

Then
\[\text{LHS} = \begin{align*}
\var u, v \bullet (\bigcup_{n \geq 0} (F^n (\bot); P)) || (Q_1; Q) & \quad \{ \text{continuity of ; } \} \\
\var u, v \bullet (\bigcup_{n \geq 0} ((F^n (\bot); P)) || (Q_1; Q)) & \quad \{ \text{continuity of } || \} \\
\var u, v \bullet (\bigcup_{n \geq 0} (((F^n (\bot); P)) || Q_1); (P || Q)) & \quad \{ \text{continuity of } || \ and ; \} \\
\end{align*} \]

\[\text{RHS} \]

(3.6) \(P_1 = S_1 \land S_2 \).

(3.6.1) \(S_1 \) is one of the following forms: \(S_{10} \land S_{11}, S_{10} < b \triangleright S_{11}, (g_{S_{10}}) \parallel (g_{S_{11}}) \). By laws \(\text{(seq-3)} \) \(\text{(seq-5)} \), and \(\text{(seq-4)} \), we can convert \(P_1 \) to non-deterministic choice, conditional, guarded-choice, respectively. The proof then follows from (3.2), (3.3), and (3.4).

(3.6.2) \(S_1 \) is an atomic command. It is obvious when \(S_1 \) is \(\bot \) or \(\text{stop} \). For the case \(S_1 = tg \), the proof follows from a structural induction on \(Q_1 \). The proof is similar to that in (2).

(3.6.3) \(S_1 = b \ast S \).

Similar to (3.5), we have

\[\text{LHS} = \begin{align*}
\var u, v \bullet (\bigcup_{n \geq 0} (F^n (\bot); S_2; P)) || (Q_1; Q) & \quad \{ \text{continuity of ; } \} \\
\var u, v \bullet (\bigcup_{n \geq 0} ((F^n (\bot); S_2; P)) || (Q_1; Q)) & \quad \{ \text{continuity of } || \} \\
\var u, v \bullet (\bigcup_{n \geq 0} (((F^n (\bot); S_2)) || Q_1); (P || Q)) & \quad \{ \text{continuity of } || \ and ; \} \\
\end{align*} \]

\[\text{RHS} \]

Proof of the Rule for Hardware Augmentation

Proof For simplicity, let us denote \(\text{int}(D, D') \) as \(\hat{D} \). We need to prove

\[(C; \rightarrow \eta_e) || \hat{D} = (C; \rightarrow \eta_e) || \hat{D} \]

By structural induction on \(C \).

Case 1 \(C \) does not contain \(r \) or \(a \), and \(C \) is event control insensitive.

(1.1) \(C \) is an atomic command.

\[C = \text{stop} \] or \(C = \bot \), trivial.

\[C = tg \], where \(tg \) is one of the following forms \(@ (x := e), \rightarrow \eta_e, \# n \). We have

\[\text{LHS} = \begin{align*}
g: \rightarrow \eta_e || D & \quad \{(\text{par-6}), (\text{guard-4})\} \\
tg: \text{skip} & \quad \{(\text{ivar-4})\} \\
tg: \rightarrow \eta_e || \hat{D} & \quad \{(\text{par-6}), (\text{guard-4})\} \\
\end{align*} \]

\[\text{RHS} \]

(1.2) \(C = S_1 \land S_2 \).

Case 2 \(C \) contains \(r \) or \(a \).

(1.3) \(C = S_1 < b \triangleright S_2 \).

\[\text{LHS} = \begin{align*}
((S_1; \rightarrow \eta_e) \land (S_2; \rightarrow \eta_e)) || D & \quad \{(\text{par-10})\} \\
((S_1; \rightarrow \eta_e) || D) \land ((S_2; \rightarrow \eta_e) || D) & \quad \{\text{hypothesis}\} \\
((S_1; \rightarrow \eta_e) || \hat{D}) \land ((S_2; \rightarrow \eta_e) || \hat{D}) & \quad \{(\text{par-10})\} \\
\text{RHS} & \quad \{\text{hypoth thesis}\} \\
\end{align*} \]

(1.4) \(C = I_{i \in I} (g_i S_i) \).

\[\text{LHS} = \begin{align*}
((I_{i \in I} (g_i (S_i; \rightarrow \eta_e))) || D & \quad \{(\text{par-6}), (\text{guard-4})\} \\
(I_{i \in I} (g_i ((S_i; \rightarrow \eta_e) || D)) & \quad \{\text{hypothesis}\} \\
(I_{i \in I} (g_i (S_i; \rightarrow \eta_e) || \hat{D})) & \quad \{(\text{par-6})\} \\
\end{align*} \]

(1.5) \(C = b \ast S \).

Let

\[F(X) = q (S; X) < b \triangleright \text{skip}, \]

For \(n \geq 0 \), we define

\[F^n (\bot) = q \bot, \]

\[F^{n+1} (\bot) = q (F^n (\bot)). \]

Then

\[\text{LHS} = \begin{align*}
((\bigcup_{n \geq 0} (F^n (\bot); \rightarrow \eta_e)) || D & \quad \{\text{continuity of } || \} \\
((\bigcup_{n \geq 0} ((F^n (\bot); \rightarrow \eta_e)) || D) & \quad \{\text{continuity of } || \} \\
((\bigcup_{n \geq 0} ((F^n (\bot); \rightarrow \eta_e)) || \hat{D}) & \quad \{\text{continuity of } || \} \\
\text{RHS} & \quad \{\text{hypothesis}\} \\
\end{align*} \]

(1.6) \(C = S_1; S_2 \).

(1.6.1) \(S_1 \) is one of the following forms \(S_{10} \land S_{11}, S_{10} < b \triangleright S_{11}, (g_{S_{10}}) \parallel (g_{S_{11}}) \). By laws \(\text{(seq-3)} \) \(\text{(seq-5)} \), and \(\text{(seq-4)} \) we can convert \(C \) into non-deterministic choice, conditional, and guarded-choice, respectively. The proof then follows from (1.2), (1.3), and (1.4).

(1.6.2) \(S_1 \) is an atomic command. It is trivial when \(S_1 \) is \(\bot \) or \(\text{stop} \). The case \(S_1 = tg \) is dealt with in what follows.

\[\text{LHS} = \begin{align*}
tg: (S_2 || D) & \quad \{(\text{par-6}), (\text{guard-4})\} \\
tg: (S_2 || \hat{D}) & \quad \{\text{hypothesis}\} \\
\text{RHS} & \quad \{(\text{par-6}), (\text{guard-4})\} \\
\end{align*} \]

(1.6.3) \(S_1 = b \ast S \).

Similar to (1.5) we have
\[
\begin{align*}
\text{LHS} & = (\bigcup_{n \geq 0} (F^n(\perp); S_2 \rightarrow \eta_e)) \parallel D \quad \{\text{continuity of } \parallel\} \\
& = \bigcup_{n \geq 0} ((F^n(\perp); S_2 \rightarrow \eta_e)) \parallel D \quad \{\text{hypothesis}\} \\
& = \bigcup_{n \geq 0} (((F^n(\perp); S_2 \rightarrow \eta_e)) \parallel \hat{D}) \quad \{\text{continuity of } \parallel\} \\
& = \text{RHS}
\end{align*}
\]

Case 2 \(C = \rightarrow \eta_e; C_0; \eta_e \).

\[
\begin{align*}
\text{LHS} & = (C_0; \eta_e; \rightarrow \eta_e) \parallel (M; \rightarrow \eta_k; D) \quad \{\text{Lemma 1}\} \\
& = (C_0 \parallel M; ((\eta_k; \rightarrow \eta_e) \parallel (\rightarrow \eta_e; D)) \quad \{\text{ivar-}4\}, \text{ event control insensitive}\} \\
& = (C_0 \parallel M; \text{skip;} (\rightarrow \eta_e \parallel D) \quad \{\text{ivar-}4\}) \\
& = (C_0 \parallel M; \text{skip;} (\rightarrow \eta_e \parallel \hat{D}) \quad \{\text{ivar-}4\}) \\
& = ((C_0; \eta_e; \rightarrow \eta_e) \parallel (M; \rightarrow \eta_k; D)) \quad \{\text{Lemma 1}\} \\
& = \text{RHS}
\end{align*}
\]

Case 3 \(C \) is one of the following forms.

\((3.1) \) \(C = C^0; C^1 \), analogous to that in (1.6).

\((3.2) \) \(C = C^0 \cap C^1 \), analogous to that in (1.2).

\((3.3) \) \(C = C^0 \triangleleft b \triangleright C^1 \), analogous to that in (1.3).

\((3.4) \) \(C = \bigcap_{i \in I} (g_i; C^i) \), analogous to that in (1.4).

\((3.5) \) \(C = b * C \), analogous to that in (1.5). \(\Box \)