A monoidal interval of isotone clones on a finite chain

Andrei Krokhin Benoit Larose
Ural State University Champlain Regional College and Concordia University

February 23, 2001

Keywords: clone, isotone operations, monoidal interval.

Abstract

Let \mathbf{k} denote a k-element chain, $k \geq 3$. Let M denote the clone generated by all unary isotone operations on \mathbf{k} and let $Pol \subseteq$ denote the clone of all isotone operations on \mathbf{k}. We investigate the interval of clones $[M, Pol \subseteq]$. Among other results, we describe completely those clones which contain only join (or meet) homomorphisms, and describe the interval completely for $k \leq 4$.

1 Introduction

Let A be a finite set. A clone on A is a set of finitary operations on A closed under superposition (composition) and containing all projections. If X is an $m \times n$-matrix with entries from A, and f is an n-ary operation, then the column $f(X)$ is calculated row-wise. For an m-ary relation θ on A, the clone $Pol \theta$ consists of all operations f such that $f(X)$ belongs to θ whenever all columns of X do. If f belongs to $Pol \theta$ we say that f preserves the relation θ.

Let ρ be a preorder on A, i.e. a binary relation on A which is reflexive and transitive. Let M denote the clone generated by all unary operations
preserving ρ and as above, denote the clone of all operations preserving ρ by $Pol\rho$. It is proved in [4] that if the interval of clones $[M, Pol\rho]$ is finite then the preorder must be a chain, and that for $|A| = 3$ it is indeed the case that the interval is finite. Our purpose in this note is to further study the monoidal interval $[M, Pol \leq]$ where \leq is the natural ordering on the set $k = \{1, 2, \ldots, k\}$ for $k \geq 3$. We refer the reader to [3, 4] and Chapter 3 of [11] for a discussion of the general problem of determining monoidal intervals, and to [8, 9, 11] for standard results and notation.

Before we state our results, we need some notation. Let $3 \leq h \leq k$ and let μ_h denote the h-ary relation consisting of all tuples (a_1, \ldots, a_h) such that $a_1 \leq a_2 \leq \cdots \leq a_h$ and such that $|\{a_1, \ldots, a_h\}| < h$. For $1 \leq h \leq k$ let P_h denote the clone of all isotone operations f which are either essentially unary or such that the image of f contains at most h elements. Notice that $P_1 = M$ and that $P_k = Pol \leq$.

Let \lor^o denote the 3-ary relation consisting of all tuples $(a, b, a \lor b)$ where \lor denotes the join operation of the chain, and similarly for the relation \land^o where \land is the meet operation of the chain k. Notice that since the order we consider is a chain, we have that $M \subseteq Pol \lor^o$ and $M \subseteq Pol \land^o$.

It is difficult to state our main result in one short theorem. Therefore we shall refer to Figure 1 and describe its main properties and where in the text their proofs can be found. The figure depicts the (partial) Hasse diagram of the interval $[M, Pol \leq]$ for $k \geq 3$.

1. The interval has three maximal elements, $Pol \lor^o$, $Pol \land^o$ and $Pol \mu_k$; this is proved in Lemma 2.4.

2. Each solid line segment indicates, as usual, a covering relation. This follows from Lemmas 2.5 and 2.6 and Theorem 3.15.

3. Let C be a clone in the interval $[M, Pol \leq]$. Suppose that C in not one of M, $Pol \leq$, P_h, $Pol \lor^o \cap P_h$, $Pol \land^o \cap P_h$, $Pol \mu_h$, for any h. Then C is contained in an interval $[P_h, Pol \mu_{h+1}]$ for some $3 \leq h \leq k - 1$. This is Theorem 3.15. These intervals are depicted by curved lines in Figure 1.

Notice that the above is sufficient to describe the interval if $k = 3$ (this was first done in [4]), see Figure 2. In section 4 we describe completely the interval for the case $k = 4$:

2
Figure 1: The interval $[M, Pol \leq]$.

3
Figure 2: The interval $[M, Pol \leq]$ for $k = 3$.

Figure 3: The interval $[M, Pol \leq]$ for $k = 4$.
Theorem 1.1 For $k = 4$, the interval $[M, Pol \leq]$ consists of exactly 11 clones, as shown in Figure 3.

The next section presents some basic results and definitions we shall need. In section 3 we prove all results that lead up to our description of the interval $[M, Pol \leq]$ in the general case. Then in section 4 we prove Theorem 1.1. We conclude with a few comments on the structure of the interval for $k \geq 5$.

2 Preliminaries

We begin with a few auxiliary results and definitions. In the following, the symbol \subseteq shall denote strict inclusion. If F is a set of operations on \mathbb{k} then $\langle F \rangle$ shall denote the clone generated by F. To simplify notation we shall write $\langle M, f_1, \ldots, f_n \rangle$ instead of $\langle M \cup \{f_1, \ldots, f_n\} \rangle$.

Definition. Let θ be an r-ary relation on \mathbb{k}, $r \geq 1$. Let i and j be distinct, $1 \leq i, j \leq r$. Then let θ_{ij} denote the set of all pairs (a_i, a_j) such that there exists $(b_1, \ldots, b_r) \in \theta$ with $b_i = a_i$ and $b_j = a_j$. The relation θ is irredundant if θ_{ij} is not the equality relation for any $i \neq j$.

Lemma 2.1 Let θ be an irredundant r-ary relation on \mathbb{k}, $r \geq 2$. If $M \subseteq Pol \theta$ then θ_{ij} is one of \leq, \geq or \mathbb{k}^2.

Proof. This is straightforward.

Lemma 2.2 (Extension Lemma) Let P be any finite poset and D a non-empty subset of P. Let $f : D \rightarrow \mathbb{k}$ be an isotone map. Then there exists a map $g : P \rightarrow \mathbb{k}$ such that (i) g is isotone, (ii) the restriction of g to D is f and (iii) g and f have the same image.

Proof. For each $x \in P$ let $D_x = \{y \in D : y \leq x\}$. Let T denote the image of f and let a_0 denote the least element in T. Now define

$$g(x) = \begin{cases} \max\{f(y) : y \in D_x\} & \text{if } D_x \neq \emptyset, \\ a_0 & \text{otherwise.} \end{cases}$$

It is easy to see that g satisfies all the requirements.
Lemma 2.3 [7] An n-ary operation f is in Pol \vee^o if and only if
\[f(x_1, \ldots, x_n) = f_1(x_1) \lor \cdots \lor f_n(x_n) \]
for some $f_i \in M$. (Mutatis mutandis for the clone Pol \wedge^o.)

Lemma 2.4 The maximal subclones of Pol \leq containing M are Pol \vee^o, Pol \wedge^o and Pol μ_k.

Proof. We refer the reader to [6] for terminology, notation, and auxiliary results used in this proof. The three clones in question are maximal subclones by Theorem 3.4 of [6]. Now we prove that there are no others. If θ is a binary relation and $M \subseteq Pol \theta$ then by Lemma 2.1 Pol θ is equal to Pol \leq or the clone of all operations on \underline{k}. Then by Lemma 3.1 of [6], if C is a maximal subclone of Pol \leq containing M then it is of type (C, h), (R, h) or (M, h) for $h \geq 3$. Suppose that C is equal neither to Pol \vee^o nor to Pol \wedge^o. By Lemmas 3.2 and 3.3 of [6] we may assume that $C = Pol \theta$ where θ is a chain-like, essential relation of arity $h \geq 3$. By Lemma 2.5 of [6], θ must contain μ_h. On the other hand, if θ contains some h-tuple not in μ_h, say (a_1, \ldots, a_h) such that $a_1 < a_2 < \ldots < a_h$, let (b_1, \ldots, b_h) be any tuple such that $b_1 < \ldots < b_h$. Then it is easy to find, using the extension lemma above, an $f \in M$ that will map (a_1, \ldots, a_h) to (b_1, \ldots, b_h). Hence θ is full (i.e. Pol $\theta = Pol \leq$), a contradiction. Thus $\theta = \mu_h$.

Lemma 2.5 1. $P_{h-1} \subseteq P_h$ for all $2 \leq h \leq k - 1$.
2. $P_{h-1} \subseteq Pol \mu_h$ for every $3 \leq h \leq k$.
3. $P_h \not\subseteq Pol \mu_h$ for all $3 \leq h \leq k$.
4. $Pol \mu_h \cap P_h \not\subseteq Pol \mu_{h-1}$ for every $4 \leq h \leq k$.
5. $Pol \mu_h \subseteq Pol \mu_{h+1}$ for every $3 \leq h \leq k - 1$.

6. $\text{Pol } \mu_4 \not\subseteq P_h$, for every $3 \leq h \leq k - 1$.

7. $\text{Pol } \mu_3 = P_2$.

8. $\text{Pol } \mu_h \cap P_h \not\subseteq P_{h-1}$ for every $4 \leq h \leq k$.

Proof.

1) This is trivial.

2) This inclusion is easy.

3) This is simple, define a binary operation f as follows:

$$f(x, y) = \begin{cases}
 x + 1 & \text{if } y = k \text{ and } 1 \leq x \leq h - 1, \\
 h & \text{if } y = k \text{ and } x \geq h, \\
 1 & \text{otherwise.}
\end{cases}$$

It is clear that $f \in P_h$ and easy to see that $f \not\in \text{Pol } \mu_h$.

4) This follows from 1), 2) and 3).

5) Note that $\text{Pol } \mu_h \not\subseteq \text{Pol } \mu_{h-1}$ follows from 4). We prove the inclusion as follows: consider the $(h + 1)$-ary relation θ consisting of all tuples (a_1, \ldots, a_{h+1}) such that $a_1 \leq a_2 \leq \ldots \leq a_{h+1}$ and such that there exists $x \in k$ with $(x, a_3, \ldots, a_{h+1}) \in \mu_h$ and $(a_1, a_2, x, a_4, \ldots, a_{h-1}) \in \mu_h$. Since this relation is constructed using only μ_h and \leq we have that $\text{Pol } \mu_h \subseteq \text{Pol } \theta$. It remains to show that $\theta = \mu_{h+1}$. Let $(a_1, \ldots, a_{h+1}) \in \theta$ and suppose that the a_i are pairwise distinct. Then for some $x \in k$ we have $(x, a_3, \ldots, a_{h+1}) \in \mu_h$ and $(a_1, a_2, x, a_4, \ldots, a_{h-1}) \in \mu_h$. From the first we have that $x = a_3$ and from the second we have that $x = a_2$ or $x = a_4$, a contradiction. Hence θ is contained in μ_{h+1}. The other inclusion is easy.

6) It suffices by 1) to show that $\text{Pol } \mu_4 \not\subseteq P_{k-1}$. Define a binary operation f on k as follows: let S be the set of pairs (x, y) such that $x + y = k + 1$ and $2 \leq x \leq k - 1$. Let

$$f(x, y) = \begin{cases}
 x & \text{if } (x, y) \in S, \\
 1 & \text{if } (x, y) < (a, b) \text{ for some } (a, b) \in S, \\
 k & \text{otherwise.}
\end{cases}$$

It is easy to see that f is isotone and that $f \not\in P_{k-1}$. However f is in $\text{Pol } \mu_4$: indeed, suppose it is not; then there exist tuples (a_1, \ldots, a_4) and (b_1, \ldots, b_1) in μ_4 such that f maps $((a_1, b_1), \ldots, (a_4, b_4))$ to some tuple (c_1, \ldots, c_4) not in μ_h. Since f is isotone, this means that $c_1 < c_2 < c_3 < c_4$.

7
This means that $1 < c_2 < k$ and $1 < c_3 < k$ and so (a_2, b_2) and (a_3, b_3) are in S; but S is an antichain in \mathbf{k}^2 so this is impossible by definition of μ_4.

7) By 2) it suffices to prove that $\text{Pol} \mu_3 \subseteq P_2$. By a well-known result of Burle [1] it will suffice to show that $\text{Pol} \mu_3 \subseteq \text{Pol} \theta$ where θ is the 3-ary relation consisting of all (a, b, c) with $|\{a, b, c\}| \leq 2$. Construct the following 3-ary relation: let α be the set of all (x_{13}, x_{22}, x_{33}) such that there exist x_{ij}, $1 \leq i, j \leq 3$ satisfying the following:

$$x_{ij} \leq x_{kl} \text{ if } i \leq j \text{ and } k \leq l$$ \hspace{1cm} (1)

$$\begin{align*}
(x_{11}, x_{13}, x_{33}) &\in \mu_3, \\
(x_{11}, x_{31}, x_{33}) &\in \mu_3, \\
(x_{12}, x_{22}, x_{32}) &\in \mu_3, \\
(x_{21}, x_{22}, x_{23}) &\in \mu_3
\end{align*}$$ \hspace{1cm} (2) \hspace{1cm} (3) \hspace{1cm} (4) \hspace{1cm} (5)

Clearly $\text{Pol} \mu_3 \subseteq \text{Pol} \alpha$. We show that $\alpha \subseteq \theta$, the other inclusion is easy. Suppose that there exists $(a, b, c) \in \alpha$ with a, b and c distinct. Suppose first that a or c is neither the largest nor the smallest of a, b and c. Without loss of generality, we may assume that $a > \min\{a, b, c\}$ and $a < \max\{a, b, c\}$. Then by condition (1) we have that $x_{11} < a < x_{33}$ and thus condition (2) is not satisfied. Hence we may assume without loss of generality that $a < b < c$. But then

$$x_{12} \leq a < b < c \leq x_{32}$$

by condition (1) so condition (4) fails.

8) If $h = 4$ consider the binary operation

$$f(x, y) = \begin{cases}
2 & \text{if } (x, y) = (k, 1), \\
3 & \text{if } (x, y) = (k - 1, 2), \\
1 & \text{if } (x, y) < (k, 1) \text{ or } (x, y) < (k - 1, 2), \\
4 & \text{otherwise.}
\end{cases}$$

It is easy to see that f is in $\text{Pol} \mu_4 \cap P_4$ but not in P_3.

Now assume that $h \geq 5$. Define a binary operation as follows: let S be the set of all pairs (x,y) such that $x = k - 1$ and $2 \leq y \leq h - 3$, and let T
be the set of pairs \((x, y)\) such that \(x = k\) and \(2 \leq y \leq h - 3\). Let
\[
g(x, y) = \begin{cases}
2 & \text{if } (x, y) = (k, 1), \\
3 & \text{if } (x, y) \in S, \\
y + 2 & \text{if } (x, y) \in T, \\
h & \text{if } y \geq h - 2, \\
1 & \text{otherwise.}
\end{cases}
\]

It is obvious that \(g \in P_h\) and \(g \notin P_{h-1}\). tuples \(\pi = (1, 2, 4, 5, \ldots, h)\) and The argument that shows that \(g \in Pol \mu_h\) is very similar to the one used in 6).

\[\blacksquare\]

Lemma 2.6 The clone \(M\) is the intersection of the clones \(Pol \lor^o\) and \(Pol \land^o\).

In fact, \(M = Pol \rho\) where \(\rho\) consists of all \(4\)-tuples of the form \((a, a, b, b)\) with \(a \leq b\) or of the form \((a, b, a, b)\) with \(a \leq b\).

Proof. Notice that an \(n\)-ary operation \(f\) is in \(Pol \lor^o \cap Pol \land^o\) if and only if it is a lattice homomorphism \(f : k^n \to k\). In particular, the kernel \(\theta\) of \(f\) is a congruence of \(k^n\). But then \(\theta\) must be of the form \(\theta = \theta_1 \times \theta_2 \times \cdots \times \theta_n\) where each \(\theta_i\) is a congruence of the lattice \(k\) (see for example [8], Theorem 2.70).

Suppose that \(f\) is not constant, i.e. that some \(\theta_i\) is not equal to \(k^n\).

Without loss of generality, we may assume that there are \(a_1 < b_1\) such that \(a_1\) and \(b_1\) are not congruent modulo \(\theta_1\). Now suppose that there are \(a_2 < b_2\) with \(a_2\) and \(b_2\) not congruent modulo \(\theta_2\). Then
\[
(a_1, b_2, 0, \ldots, 0) \lor (b_1, a_2, 0, \ldots, 0) = (b_1, b_2, 0, \ldots, 0).
\]

But \(k^n/\theta\) is isomorphic to a chain, hence the join operation is the ‘maximum’, so \((b_1, b_2, 0, \ldots, 0)/\theta = (a_1, b_2, 0, \ldots, 0)/\theta\) or \((b_1, b_2, 0, \ldots, 0)/\theta = (b_1, a_2, 0, \ldots, 0)/\theta\). But by choice of the \(a_i, b_i\) this is not the case. Hence \(\theta_2 = k^n\) and by the same argument the same holds for all \(\theta_i\) with \(i \geq 2\). This means that \(f\) depends only on its first variable, so \(f \in M\) and we are done.

For the second statement: We have that \(Pol \rho \subseteq Pol \rho_{231}\) and \(Pol \rho \subseteq Pol \rho_{231}\) where
\[
\rho_{231} = \{(u, v, w) : (x, u, v, w) \in \rho \text{ for some } x\}
\]
and
\[\rho_{231} = \{ (u,v,w) : (w,u,v,x) \in \rho \text{ for some } x \} \]

But \((x,u,v,w) \in \rho \) iff either \(u = w \geq v \) or \(v = w \geq u \) iff \(w = u \lor v \). In other words, \(\rho_{231} = \lor^2 \). In the same manner one sees that \(\rho_{231} = \land^2 \).

Hence by the result above we have that \(Pol \rho \subseteq M \). On the other hand it is clear that \(M \subseteq Pol \rho \) so we are done.

\[\blacksquare \]

\section{The interval \([M, Pol \leq], k \geq 3\)}

The next few lemmas will be used to prove the following result:

\textbf{Theorem 3.1} Let \(f \in Pol \lor^2 \) be essentially at least binary, and suppose the image of \(f \) has \(h \) elements, \(2 \leq h \leq k \). Then \((M, f) = Pol \lor^2 \cap P_h \). (Mutatis mutandis for \(Pol \land^2 \)).

\textbf{Lemma 3.2} Let \(f \) be an \(n \)-ary operation in \(Pol \lor^2 \), say \(f(x_1, \ldots, x_n) = f_1(x_1) \lor \cdots \lor f_n(x_n) \) with \(f_i \in M \) for all \(1 \leq i \leq n \). Then \(f \) depends on \(x_i \) if and only if there exist \(u < v \) in the image of \(f_i \) and \(t_j \) in the image of \(f_j \) for all \(j \neq i \) such that \(t_j < v \) for all \(j \).

\textbf{Proof.} Suppose that \(f \) depends on \(x_i \), i.e. there exist \(x_i < x'_i \) and \(x_j \) (\(j \neq i \)) such that \(f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) < f(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) \). Let \(u = f_i(x_i) \) and \(v = f_i(x'_i) \) and \(t_j = f_j(x_j) \) for all \(j \neq i \). Then

\[t_1 \lor t_2 \lor \cdots t_{i-1} \lor u \lor t_{i+1} \lor \cdots \lor t_n < t_1 \lor t_2 \lor \cdots t_{i-1} \lor v \lor t_{i+1} \lor \cdots \lor t_n \]

implies that \(u < v \) and that no \(t_j \) is greater or equal to \(v \).

Conversely, suppose that there exist \(u, v, t_j \) as in the statement of the lemma. Let \(f_i(x_i) = u \) and \(f_i(x'_i) = v \) and \(f(x_j) = t_j \) for all \(j \neq i \). Then

\[f(x_1, \ldots, x_n) = t_1 \lor t_2 \lor \cdots t_{i-1} \lor u \lor t_{i+1} \lor \cdots \lor t_n < \]

\[< v = t_1 \lor t_2 \lor \cdots t_{i-1} \lor v \lor t_{i+1} \lor \cdots \lor t_n = \]

\[= f(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n). \]
Lemma 3.3 Let ϕ be an n-ary operation in $\text{Pol} \vee^o$. Then there exist $g_i \in M$ such that ϕ and $r(t) = \phi(g_1(t), \ldots, g_n(t))$ have the same image.

Proof. Let $T = \{a_1 < a_2 < \ldots < a_h\}$ be the image of ϕ. We find elements b_1, \ldots, b_h of \mathbb{K}^n such that (1) $\phi(b_i) = a_i$ for all $1 \leq i \leq h$ and (2) $b_i \leq b_{i+1}$ for all $1 \leq i \leq h - 1$. Indeed, choose c_1, \ldots, c_h such that $\phi(c_i) = a_i$ for all $1 \leq i \leq h$. Let $b_i = c_1 \vee c_2 \vee \cdots \vee c_i$ for all $1 \leq i \leq h$. Certainly the b_i's satisfy the second condition, and to see that they satisfy the first, just notice that

$$\phi(b_i) = \phi(c_1 \vee \cdots \vee c_i) = \phi(c_1) \vee \cdots \vee \phi(c_i) = a_1 \vee \cdots \vee a_i = a_i.$$

Now it suffices to define the maps g_i $(i \in \mathbb{N})$ as follows: consider the set of first coordinates of the tuples b_1, \ldots, b_h, say $B_1 = \{b_1(1) \leq b_2(1) \leq \cdots \leq b_h(1)\}$. We may find an isotone map g_1 from \mathbb{K} onto B_1 such that $g_1(i) = b_i(1)$ for all $1 \leq i \leq h$ (easy). Do the same for each coordinate. Then of course $b_i = (g_1(i), g_2(i), \ldots, g_n(i))$ for all i, so $\phi(g_1(i), \ldots, g_n(i)) = \phi(b_i) = a_i$ for all i and we are done.

Lemma 3.4 Let $\phi \in \text{Pol} \vee^o$ be an essentially at least binary operation. Then there exists $\psi \in \langle M, \phi \rangle$ such that (1) ψ is essentially binary and (2) ψ and ϕ have the same image.

Proof. Let ϕ be an n-ary operation in $\text{Pol} \vee^o$, and suppose without loss of generality that $n \geq 3$ and that ϕ depends on its first two variables. Let T be the image of ϕ. By Lemma 2.3 we have that $\phi(x_1, \ldots, x_n) = f_1(x_1) \vee \cdots \vee f_n(x_n)$ for some $f_i \in M$. Consider the operation $F(x_2, \ldots, x_n) = f_2(x_2) \vee \cdots \vee f_n(x_n)$, and let B denote its image. By Lemma 3.3, we may find $g_2, \ldots, g_n \in M$ such that the map $h(t) = F(g_2(t), \ldots, g_n(t))$ has image equal to B.

We claim that the map $\psi(x, y) = f_1(x) \vee h(y)$ is the one we’re looking for. Indeed, ψ is in the clone $\langle M, \phi \rangle$ since $\psi(x, y) = \phi(x, g_2(y), \ldots, g_n(y))$.

The image of ϕ is clearly the set of all $z_1 \vee \cdots \vee z_n$ such that z_i is in the image of f_i. Similarly, the image of F is the set of all $z_2 \vee \cdots \vee z_n$ such that z_i is in the image of f_i for $2 \leq i \leq n$. Hence the image of ϕ is equal to the
set of all $z_1 \lor b$ such that z_1 is in the image of f_1 and $b \in B$, which is also the image of ψ. Hence ϕ and ψ have the same image.

We now show that ψ depends on both variables.

We prove that ψ depends on x: ϕ depends on x_1, so by Lemma 3.2, there exist $u < v$ in the image of f_1 and t_j in the image of f_j $(2 \leq j \leq n)$ such that $t_j < v$ for all $j \geq 2$. Let $b = t_2 \lor \cdots \lor t_n$. Then $b \in B$, and $b < v$ so by Lemma 3.2 ψ depends on its first variable.

We prove that ψ depends on y: ϕ depends on x_2, so by Lemma 3.2, there exist $z < z'$ in the image of f_2 and t_j in the image of f_j $(j \neq 2)$ such that $t_j < z'$ for all $j \neq 2$. Let $u = z \lor t_3 \lor \cdots \lor t_n$ and $v = z' \lor t_3 \lor \cdots \lor t_n$. Notice that both u and v are in B. Now $v = z'$ and $u < z'$ so $u < v$, and t_1 is an element of the image of f_1 which is less than v, By Lemma 3.2, ψ depends on its second variable.

\[\square\]

Definition. Let $2 \leq h \leq k$ and let $T = \{a_1 < a_2 < \ldots < a_h\}$ be a subset of \mathbb{k}. Define an element α_T of M by

$$\alpha_T(x) = \begin{cases} a_1 & \text{if } x \leq a_1, \\ a_i & \text{if } a_{i-1} < x \leq a_i \text{ for some } 1 < i \leq h - 1, \\ a_h & \text{otherwise.} \end{cases}$$

Notice that α_T is a retraction onto T, i.e. $\alpha_T^2 = \alpha_T$.

For each $n \geq 2$ we define n-ary operations $J_T^{(n)} = J_T$ and $M_T^{(n)} = M_T$ as follows: $J_T(x_1, \ldots, x_n) = \alpha_T(x_1 \lor x_2 \lor \cdots \lor x_n)$ and $M_T(x_1, \ldots, x_n) = \alpha_T(x_1 \land x_2 \land \cdots \land x_n)$ for all $x_i \in \mathbb{k}$. Notice that we have $J_T(x_1, \ldots, x_n) = \alpha_T(x_1) \lor \cdots \lor \alpha_T(x_n)$ and similarly for M_T. (J and M stand for ‘join’ and ‘meet’). Notice also that we have nice ‘identities’ such as $J_T(x, J_T(y, z)) = J_T(x, y, z)$, etc. (hence the convenient abuse of notation).

Lemma 3.5 Let $\phi \in \text{Pol} \lor^0$ be an essentially binary operation, say $\phi(x, y) = f(x) \lor g(y)$ where $f, g \in M$. Let T denote the image of g. Then the operation $\Gamma(x, y) = f(x) \lor \alpha_T(y)$ is in (M, ϕ), it has the same image as ϕ and depends on both variables.
Proof. Let $T = \{c_1 < \ldots < c_r\}$. Choose $b_i \in \mathbb{R}$ such that $g(b_i) = c_i$ for all $1 \leq i \leq r$. Of course we have that $b_1 < \ldots < b_r$. Define

$$h(t) = \begin{cases}
 b_1 & \text{if } t \leq c_1, \\
 b_i & \text{if } c_{i-1} < t \leq c_i \text{ for some } 1 < i \leq r - 1, \\
 b_r & \text{otherwise.}
\end{cases}$$

Then $gh(y) = \alpha_T(y)$, hence $\phi(x, h(y)) = f(x) \lor \alpha_T(y)$. In particular, this operation is in $\langle M, \phi \rangle$. Since the image of ϕ consists of all $u \lor v$ with u in the image of f and v in the image of g, it is clear that Γ has the same image. By Lemma 3.2 it is clear that Γ depends on both variables since ϕ does.

\[\blacksquare\]

Lemma 3.6 Let $\phi \in \mathrm{Pol} \lor^o$ be an essentially at least binary operation and let T denote its image. Let a_1 denote the least element of T. Then there is an operation $F(x, y) = f(x) \lor g(y)$ in the clone $\langle M, \phi \rangle$ such that (1) the image of F is T, (2) the images of f and g are contained in T, (3) a_1 is in the image of f and g and (4) F is essentially binary.

Proof. By Lemma 3.4 we may assume without loss of generality that ϕ is essentially binary, say $\phi(x, y) = p(x) \lor q(y)$ for some $p, q \in M$. Since the map α_T is a retraction onto T we have that

$$\phi(x, y) = \alpha_T(\phi(x, y)) = \alpha_T p(x) \lor \alpha_T q(y)$$

Let $f(x) = \alpha_T p(x)$ and $g(y) = \alpha_T q(y)$. Then $F = \phi$ satisfies the conclusion of the lemma. Indeed, it is clear that the image of f and of g is contained in T. This implies that $f(x) \lor g(y) \geq a_1$ for all x and y, and since a_1 is in the image of ϕ, a_1 must be in the image of f and of g. Since ϕ satisfies (1) and (4) we are done.

\[\blacksquare\]

Lemma 3.7 Let $\phi \in \mathrm{Pol} \lor^o$ be an essentially at least binary operation and let T denote its image. Let a_1 denote the least element of T. Then there exists a subset D of T with $|D| \geq 2$ and containing a_1 such that the operation $G(x, y) = \alpha_T(x) \lor \alpha_D(y)$ is in $\langle M, \phi \rangle$. Furthermore, G depends on both variables and has image equal to T.
Proof. By Lemma 3.6, there exists an operation \(F \in \langle M, \phi \rangle \) such that \(F(x, y) = f(x) \lor g(y) \) and such that \(T \) contains the image of \(f \) and \(g \), \(a_1 \) is contained in the image of \(f \) and \(g \), \(F \) is essentially binary and has image equal to \(T \). Let \(U \) and \(V \) denote the image of \(f \) and \(g \) respectively. By Lemma 3.5, we have that the operation \(F'(x, y) = f(x) \lor \alpha_V(y) \) is in \(\langle M, \phi \rangle \), is essentially binary and has image equal to \(T \). Applying Lemma 3.5 again, we get that the operation \(F''(x, y) = \alpha_U(x) \lor \alpha_V(y) \) is in \(\langle M, \phi \rangle \), is essentially binary and has image equal to \(T \).

For convenience, let us put \(f = \alpha_U \) and \(g = \alpha_V \) and \(\phi = F'' \).

We may assume without loss of generality that \(a_h \) is in the image of \(g \). Consider the operation

\[
G(x, y, z) = \phi(\phi(x, y), z).
\]

Clearly \(G \) is in the clone \(\langle M, \phi \rangle \). Now we have

\[
G(x, y, z) = f(f(x) \lor g(y)) \lor g(z) \\
= f(x) \lor fg(y) \lor g(z) \\
= f(x) \lor g(z) \lor fg(y) \\
= \phi(x, z) \lor fg(y)
\]

By Lemma 3.3 we may find operations \(h_1 \) and \(h_2 \) in \(M \) such that \(f'(t) = \phi(h_1(t), h_2(t)) \) has the same image as \(\phi \), namely \(T \). So we can construct the operation

\[
H(x, y) = G(h_1(x), y, h_2, (x)) = \phi(h_1(x), h_2(x)) \lor fg(y) = f'(x) \lor fg(y)
\]

where the image of \(f' \) is \(T \). Notice that \(H \) depends on both variables: indeed, we have that \(fg(1) = f(a_1) = f(f(1)) = f(1) = a_1 \). Thus by Lemma 3.2 \(H \) depends on \(y \). To show that \(H \) depends on \(y \) it suffices to find some element in the image of \(fg \) which is greater than \(a_1 \). If this is not the case, then we have that \(fg \) is constant so \(a_1 = fg(1) = fg(k) = f(a_h) \). Hence \(f(a) = a_1 \) for all \(a \in T \). However, the image of \(f \) is contained in \(T \) and since the map \(\phi \) depends on \(x \) the image of \(f \) must contain at least two elements; since \(f \) is a retraction onto its image, this is a contradiction. Furthermore, the new operation \(H \) also has image \(T \). Indeed, we saw above that \(fg(1) = a_1 \); if \(a \in T \) and \(x \) is such that \(f'(x) = a \) then \(H(x, 1) = f'(x) \lor fg(1) = a \lor a_1 = a \). Now
we may apply Lemma 3.5 to construct the operation $\psi(x, y) = \alpha_T(x) \lor g(y)$. By Lemma 3.5, ψ has image equal to T and depends on both variables.

Let D denote the image of fg. We’ve seen above that the image of fg contains at least two elements, that it is contained in T and contains a_1. Now apply Lemma 3.5 to the operation ψ to obtain that the operation $G(x, y) = \alpha_T(x) \lor \alpha_D(y)$ is in (M, ϕ), that it depends on both variables and has image T.

\[\square \]

Lemma 3.8 Let $\phi \in Pol^\circ$ be an essentially at least binary operation and let T denote its image. Then the operation J_T is in the clone (M, ϕ).

Proof.

Let $T = \{ a_1 < a_2 < \ldots < a_h \}$. By Lemma 3.7 there exists a subset D of T such that $G(x, y) = \alpha_T(x) \lor \alpha_D(y)$ is in (M, ϕ), is essentially binary and has image equal to T. Furthermore, D contains at least 2 elements, contains a_1 and is contained in T. If D is equal to T, then $G = J_T$ and we are done. Thus we will assume that D is properly contained in T. We shall build an operation $\alpha_T(x) \lor \alpha_D(y)$ where D' is a subset of T that contains D properly.

Let $b_2 < b_3 < \ldots < b_s$ be the elements of T not in D; then of course $2 \leq s < h$. Also note that $a_1 < b_2$ since a_1 is in D.

Define $\sigma \in M$ as follows:

$$
\sigma(t) = \begin{cases}
 a_1 & \text{if } t \leq a_1, \\
 b_i & \text{if } a_{i-1} < t \leq a_i, \text{ for } 2 \leq i < s \\
 b_s & \text{otherwise.}
\end{cases}
$$

Let $\psi(x, y) = \sigma G(x, y)$ and define

$$
\Delta(x, y, z, w) = G(\psi(x, y), G(z, w)).
$$

Clearly Δ is in the clone (M, ϕ). We have

$$
\Delta(x, y, z, w) = \alpha_T(\sigma \alpha_T(x) \lor \sigma \alpha_D(y)) \lor \alpha_D(\alpha_T(z) \lor \alpha_D(w))
$$

$$
= [\alpha_T \sigma \alpha_T(x) \lor \alpha_D \alpha_T(z)] \lor [\alpha_T \sigma \alpha_D(y) \lor \alpha_D(w)]
$$

Let

$$
\delta(x, z) = \alpha_T \sigma \alpha_T(x) \lor \alpha_D \sigma \alpha_T(z)
$$

15
and

\[\epsilon(y, w) = \alpha_T \sigma \alpha_D(y) \lor \alpha_D(w). \]

We claim that (1) \(\delta \) has image equal to \(T \) and that (2) the image of \(\epsilon \) contains \(D \) properly. It is immediate that the images of \(\delta \) and \(\epsilon \) are contained in \(T \).

(1) Let \(a \in T \). If \(a \in D \) then

\[\delta(1, a) = \alpha_T \sigma \alpha_T(1) \lor \alpha_D \alpha_T(a) \]
\[= \alpha_T \sigma(a_1) \lor \alpha_D(a) \]
\[= \alpha_T(\alpha_1) \lor a \]
\[= a_1 \lor a = a. \]

If \(a \notin D \) then \(a = b_i \) for some \(2 \leq i \leq s \). Then

\[\delta(a_i, 1) = \alpha_T \sigma \alpha_T(a_i) \lor \alpha_D \alpha_T(1) \]
\[= \alpha_T \sigma(a_i) \lor \alpha_D(a_1) \]
\[= \alpha_T(b_i) \lor a_1 \]
\[= b_i \lor a_1 = b_i. \]

(2) First we show that \(D \) is contained in the image of \(\epsilon \). Let \(d \in D \). Then

\[\epsilon(1, d) = \alpha_T \sigma \alpha_D(1) \lor \alpha_D(d) \]
\[= \alpha_T \sigma(a_1) \lor d \]
\[= \alpha_T(a_1) \lor d \]
\[= a_1 \lor d = d. \]

Now we show that the image of \(\epsilon \) must contain \(b_i \) for some \(2 \leq i \leq s \). Suppose first that \(a_i \in D \) for some \(2 \leq i \leq s \). Then

\[\epsilon(a_i, 1) = \alpha_T \sigma \alpha_D(a_i) \lor \alpha_D(1) \]
\[= \alpha_T \sigma(a_i) \lor a_1 \]
\[= \alpha_T(b_i) \lor a_1 \]
\[= b_i \lor a_1 = b_i. \]

Otherwise \(D \) must contain \(a_i \) for some \(i > s \). Then

\[\epsilon(a_i, 1) = \alpha_T \sigma \alpha_D(a_i) \lor \alpha_D(1) \]

16
\[\begin{align*}
&= \alpha_T \sigma(a_i) \lor a_1 \\
&= \alpha_T (b_i) \lor a_1 \\
&= b_i \lor a_1 = b_i.
\end{align*}\]

Let \(D' \) denote the image of \(\epsilon \). By Lemma 3.3 there exist operations \(f_i, g_i \in M, 1 \leq i \leq 2 \), such that \(P(x) = \delta(f_1(x), f_2(x)) \) has image \(T \) and \(Q(y) = \epsilon(g_1(y), g_2(y)) \) has image \(D' \). Then the operation \(R(x, y) = P(x) \lor Q(y) \) is in the clone \(\langle M, \phi \rangle \) since

\[P(x) \lor Q(y) = \delta(f_1(x), f_2(x)) \lor \epsilon(g_1(y), g_2(y)) = \Delta(f_1(x), g_1(y), f_2(x), g_2(y)).\]

Since \(D' \) contains \(a_1 \) and at least two elements, it is clear that \(R \) has image equal to \(T \) and depends on both variables. We may apply Lemma 3.5 twice to \(R \) to obtain that the clone \(\langle M, \phi \rangle \) contains the operation \(G'(x, y) = \alpha_T(x) \lor \alpha_D(y) \). Repeating the above argument to this operation will eventually yield the operation \(J_T \).

\[\blacksquare\]

Lemma 3.9 Let \(T \) be any \(h \)-element subset of \(k \) with \(2 \leq h \leq k \). Then \(\langle M, J_T \rangle = Pol \lor^o \cap P_h \).

Proof. It obviously suffices to prove that \(Pol \lor^o \cap P_h \subseteq \langle M, J_T \rangle \). Let \(f \) be an \(n \)-ary operation in \(Pol \lor^o \cap P_h \). We may assume that \(f \) is essentially at least binary. Let \(B = \{b_1 < b_2 < \ldots < b_t\} \) be the image of \(f \), where \(2 \leq t \leq h \). Let \(T = \{a_1 < a_2 < \ldots < a_h\} \). Define a map \(\sigma \) as follows:

\[\sigma(t) = \begin{cases}
 b_1 & \text{if } t \leq a_1, \\
 b_i & \text{if } a_{i-1} < t \leq a_i, \text{ for } 2 \leq i < t \\
 b_t & \text{otherwise.}
\end{cases}\]

Consider the operation \(F(x, y) = \sigma(J_T(x, y)) \). Clearly it is in \(\langle M, J_T \rangle \). It has image equal to \(B \) since the image of \(J_T \) is \(T \) and \(\sigma \) maps \(T \) onto \(B \). Furthermore, \(F \) is essentially binary. Indeed, we have that

\[F(1, 1) = \sigma(J_T(1, 1)) = \sigma(\alpha_T(1 \lor 1)) = \sigma(a_1) = b_1,\]

17
and

\[
F(1, k) = \sigma(J_T(1, k)) \\
= \sigma(o_T(1 \lor k)) \\
= \sigma(a_h) = b_k.
\]

and

\[
F(k, 1) = \sigma(J_T(k, 1)) \\
= \sigma(o_T(k \lor 1)) \\
= \sigma(a_h) = b_k.
\]

By Lemma 3.8 we obtain that \(J_B \in \langle M, J_T \rangle \).

By Lemma 2.3 we may write \(f(x_1, \ldots, x_n) = f_1(x_1) \lor \ldots \lor f_n(x_n) \) for some \(f_i \in M \). Since \(o_B \) is a retraction onto the image \(B \) of \(f \) we obtain that

\[
f(x_1, \ldots, x_n) = o_B(f(x_1, \ldots, x_n)) \\
= o_B(f_1(x_1) \lor \ldots \lor f_n(x_n)) \\
= J_B(f_1(x_1), f_2(x_2), \ldots, f_n(x_n)).
\]

Hence \(f \in \langle M, J_B \rangle \subseteq \langle M, J_T \rangle \) and this completes the proof.

\[
\square
\]

We may now prove the result mentioned at the beginning of this section:

Proof of Theorem 3.1: Let \(f \) be an essentially binary operation in \(Pol \lor^o \) whose image has \(h \) elements, \(2 \leq h \leq k \). By Lemma 3.8 the clone \(\langle M, f \rangle \) contains the operation \(J_T \) where \(T \) is the image of \(f \). Hence by Lemma 3.9 we have that \(Pol \lor^o \cap P_h \subseteq \langle M, f \rangle \). The other inclusion is trivial.

\[
\square
\]

Corollary 3.10 The only clones \(C \) such that \(M \subset C \subseteq Pol \lor^o \) are those of the form \(Pol \lor^o \cap P_h \) with \(2 \leq h \leq k \). (Mutatis mutandis for \(Pol \land^o \)).
Proof: Let C be a clone that contains M properly and contained in $Pol \lor^\circ$. Then C contains an operation f which is essentially at least binary and has largest image T, say $|T| = h$ where $2 \leq h \leq k$. Clearly $C \subseteq Pol \lor^\circ \cap P_h$. By Theorem 3.1 C must contain $Pol \lor^\circ \cap P_h$ and this completes the proof.

\[\]

Corollary 3.11 Let $f \in Pol \lor^\circ$ be essentially at least binary, and suppose the image of f has h elements, $2 \leq h \leq k$. Let $g \in Pol \land^\circ$ be essentially at least binary, and suppose the image of g has h elements. Then $(M, f, g) = P_h$.

Proof: It follows from Lemmas 2.3 and 2.4 that $Pol \leq (M, \lor, \land)$. In fact, we claim that the n-ary operations in $Pol \leq$ are those operations of the form

\[f(x_1, \ldots, x_n) = f_1(x_1, \ldots, x_n) \land f_2(x_1, \ldots, x_n) \land \cdots \land f_s(x_1, \ldots, x_n)\]

where the f_i are n-ary operations in $Pol \lor^\circ$. Indeed, it is clear that operations of this form are in $Pol \leq$. It thus suffices to prove that this set of operations is closed under the operations in M (easy) and under the operations \land (obvious) and \lor: indeed, just use the distributive law for this last case.

Let F be an n-ary operation in P_h and denote its image by T. Let $C = (M, f, g)$ where the operations f and g are as in the statement of the corollary. By Theorem 3.1 (and its dual) C contains $Pol \lor^\circ \cap P_h$ and $Pol \land^\circ \cap P_h$. In particular, C contains M_T.

Write

\[F(\bar{x}) = f_1(\bar{x}) \land f_2(\bar{x}) \land \cdots \land f_s(\bar{x})\]

where $\bar{x} = (x_1, \ldots, x_n)$, and $f_i \in Pol \lor^\circ$. Since the image of F is T, we have that

\[F(\bar{x}) = \alpha_T(F(\bar{x})) = \alpha_T^2(F(\bar{x})) = \alpha_T^2(f_1(\bar{x}) \land f_2(\bar{x}) \land \cdots \land f_s(\bar{x})) = \alpha_T(\alpha_T(f_1(\bar{x})) \land \alpha_T(f_2(\bar{x})) \land \cdots \land \alpha_T(f_s(\bar{x}))) = M_T(\alpha_T(f_1(\bar{x})), \alpha_T(f_2(\bar{x})), \ldots, \alpha_T(f_s(\bar{x})))\]

where each $\alpha_T(f_i(\bar{x}))$ is in $Pol \lor^\circ \cap P_h$. Hence F is in the clone C and we are done.
The following result improves on Corollary 3.11. It states that, if a clone C above M contains non-trivial (i.e. non-unary) operations in both $\text{Pol} \lor^o$ and $\text{Pol} \land^o$, then it contains P_h where h is the maximum value for which either $\text{Pol} \lor^o \cap P_h \subseteq C$ or $\text{Pol} \land^o \cap P_h \subseteq C$.

Theorem 3.12 Let $f \in \text{Pol} \lor^o$ be essentially at least binary and assume its image contains h elements, $2 \leq h \leq k$. Let $g \in \text{Pol} \land^o$ be essentially at least binary and assume its image contains r elements, $2 \leq r \leq k$. Then the clone (M, f, g) contains P_t where $t = \max\{h, r\}$.

Proof. We shall prove the result for $r \leq h$ (the other case follows easily by dualising the argument). By Corollary 3.11 we may assume without loss of generality that $r < h$. Let $C = \langle M, f, g \rangle$. Let $U = \{1, 2, \ldots, h\}$ and let $V = \{1, 2, \ldots, r\}$. By Theorem 3.1 the clone C contains the operations J_U and M_V. By Corollary 3.11 the clone C contains P_2, and hence contains the operation

$$f(x, y) = \begin{cases} 1 & \text{if } x \leq r \text{ or } y \leq r, \\ r + 1 & \text{otherwise.} \end{cases}$$

Then C contains the operation

$$\phi(x, y) = J_U(M_V(x, y), f(x, y)).$$

We claim that $\phi = M_D$ where $D = \{1, 2, \ldots, r + 1\}$. Indeed, we have by definition that

$$M_V(x, y) = \begin{cases} x \land y & \text{if } x \leq r \text{ or } y \leq r, \\ r & \text{otherwise.} \end{cases}$$

On the other hand, it easy to see that

$$M_D(x, y) = \begin{cases} x \land y & \text{if } x \leq r \text{ or } y \leq r, \\ r + 1 & \text{otherwise.} \end{cases}$$

Suppose that $x \leq r$ or $y \leq r$. Then $M_V(x, y) = x \land y$ and $f(x, y) = 1$. Thus $\phi(x, y) = J_U(x \land y, 1) = x \land y$. Otherwise we have that $M_V(x, y) = r$ and $f(x, y) = r + 1$ so $\phi(x, y) = J_U(r, r + 1) = r + 1$.

Thus the clone C contains M_D where D contains $r + 1$ elements. If $r + 1 < h$ then repeat the above construction until the operation M_U is shown to be in C. By Corollary 3.11 we conclude that C contains P_h.

20
Lemma 3.13 Let \(f \) be an isotone operation not in \(\text{Pol} \lor^0 \). Then \(\text{Pol} \land^0 \cap P_2 \subseteq (M, f) \). (Mutatis mutandis for the dual).

Proof. Let \(f \) satisfy the hypothesis of the lemma. Then permuting variables if necessary, we may assume that there exist \(a_i \leq b_i \) in \(k \), \(1 \leq i \leq n \) such that

\[
\begin{align*}
f(a_1, a_2, \ldots, a_k, b_{k+1}, \ldots, b_n) &= u \\
f(b_1, b_2, \ldots, b_k, a_{k+1}, \ldots, a_n) &= v \\
f(b_1, b_2, \ldots, b_k, b_{k+1}, \ldots, b_n) &= w
\end{align*}
\]

where \(u \lor v \neq w \). Since \(f \) is isotone we actually have that \(u \lor v < w \). For \(1 \leq i \leq n \) define

\[
f_i(t) = \begin{cases}
a_i & \text{if } t < k, \\
b_i & \text{otherwise.} \end{cases}
\]

and define

\[
h(t) = \begin{cases}
1 & \text{if } t \leq u \lor v, \\
k & \text{otherwise.} \end{cases}
\]

Consider the operation defined by

\[
\phi(x, y) = h(f(f_1(x), \ldots, f_k(x), f_{k+1}(y), \ldots, f_n(y))).
\]

Clearly \(\phi \) is in \((M, f) \). Let \(x = y = k \). Then \(\phi(x, y) = h(f(b_1, \ldots, b_n)) = h(w) = k \). If \(x = k \) and \(y < k \) then \(\phi(x, y) = h(f(b_1, \ldots, b_k, a_{k+1}, \ldots, a_n)) = h(v) = 1 \). If \(x < k \) and \(y = k \) then \(\phi(x, y) = h(f(a_1, \ldots, a_k, b_{k+1}, \ldots, b_n)) = h(u) = 1 \). Finally if \(x < k \) and \(y < k \) then \(\phi(x, y) = h(f(a_1, \ldots, a_n)) \leq h(v) = 1 \). Hence \(\phi(x, y) = k \) if \(x = y = k \) and \(\phi(x, y) = 1 \) otherwise. This is obviously an essentially binary operation in \(\text{Pol} \land^0 \), so by Theorem 3.1 we are done.

Theorem 3.14 Let \(C \) be a clone containing \(M \) and contained in \(\text{Pol} \leq \). Suppose that \(C \) is contained neither in \(\text{Pol} \lor^0 \) nor in \(\text{Pol} \land^0 \). Let \(3 \leq h \leq k \). If \(C \) is not contained in \(\text{Pol} \mu_h \) then \(C \) contains \(P_h \).
Proof. Let C be a clone containing M and contained in $Pol \leq$, and suppose that C is contained neither in $Pol \vee^{\circ}$ nor in $Pol \wedge^{\circ}$. To prove the theorem, it will suffice to prove the following equivalent statement:

\[
\text{for all } 3 \leq h \leq k, \text{ if } C \text{ contains } P_{h-1} \text{ and is not } (*) \\
\text{contained in } Pol \mu_h \text{ then } P_h \text{ is contained in } C.
\]

We first prove by induction on h that statement (*) implies our result. Assume that (*) holds for all $3 \leq h \leq k$. Let $h = 3$. By Lemma 3.13 (and its dual) C must contain $Pol \vee^{\circ} \cap P_2$ and $Pol \wedge^{\circ} \cap P_2$. Hence by Theorem 3.12 C contains P_2 and we conclude from (*) that C contains P_3. Now assume the result holds for $h - 1$. If C is not contained in $Pol \mu_h$ then by Lemma 2.5 (1) C is not contained in $Pol \mu_{h-1}$. By induction hypothesis we then have that $P_{h-1} \subseteq C$. We then conclude from (*) that C contains P_h and we are done.

We now proceed to prove statement (*). Since C contains P_2, it will suffice by Theorem 3.12 to find an essentially at least binary operation $\phi \in C$ such that ϕ is in $Pol \wedge^{\circ}$ and whose image contains (at least) h elements. There exists an n-ary operation $f \in C$ that does not preserve μ_h, i.e. there are elements $a_{ij} \in k$, $1 \leq i \leq n$, $1 \leq j \leq h$ such that $(a_{i1}, \ldots, a_{ih}) \in \mu_h$ for all i and such that $(u_1, \ldots, u_h) = (f(a_{i1}, \ldots, a_{n1}), \ldots, f(a_{ih}, \ldots, a_{nh}))$ is not in μ_h. Notice that by definition of μ_h we have that $a_{ij} \leq a_{i(j+1)}$ for all i and j. But $f \in Pol \leq$ so it follows that $u_1 < u_2 < \ldots < u_h$. Since C contains M, we may assume that $u_i = i$ for all $1 \leq i \leq h$ (simply compose f with an operation $g \in M$ that maps u_i to i). For each $1 \leq i \leq n$ define an operation $g_i \in M$ as follows:

\[
g_i(j) = \begin{cases}
 a_{ij} & \text{if } i < h, \\
 a_{ih} & \text{if } i \geq h.
\end{cases}
\]

Let $T = \{1, 2, \ldots, h\}$ and for convenience let \mathbf{x} stand for (x_1, \ldots, x_n). We claim that the following operation is the one we seek:

\[
\phi(\mathbf{x}) = f(g_1 M_T(\mathbf{x}), \ldots, g_n M_T(\mathbf{x}))
\]

where M_T is the ‘partial meet’ operation defined earlier. We will prove that (1) ϕ is in C, (2) ϕ depends on all its variables, (3) the image of ϕ contains T and (4) ϕ is in $Pol \wedge^{\circ}$.
(1) By definition of μ_h the set \{\(a_{i_1}, \ldots, a_{i_h}\)\} contains at most \(h - 1\) elements, hence the operation \(g_i M_T\) is in \(P_{h-1}\) for all \(i\). It follows that \(\phi \in C\).

(2) For any \(1 \leq i \leq n\) we have that
\[
\phi(2, 2, \ldots, 2, 1, 2, \ldots, 2) = f(g_1(1), \ldots, g_n(1))
= f(a_{11}, \ldots, a_{n1})
= 1
\]
(where the lone 1 appears in the \(i\)-th place) and
\[
\phi(2, \ldots, 2) = f(g_1(2), \ldots, g_n(2))
= f(a_{12}, \ldots, a_{n2})
= 2.
\]

(3) Let \(1 \leq j \leq h\). Then
\[
\phi(j, \ldots, j) = f(g_1(j), \ldots, g_n(j))
= f(a_{1j}, \ldots, a_{nj})
= j.
\]

Hence the image of \(\phi\) contains \(T\).

(4) We start with a simple observation: for any \(\bar{x} \in \mathbb{K}^n\), there exists \(1 \leq j \leq n\) such that
\[
(g_1 M_T(\bar{x}), \ldots, g_n M_T(\bar{x})) = (a_{1j}, \ldots, a_{nj}).
\]
Notice also that the tuples \((a_{1j}, \ldots, a_{nj})\), \(1 \leq j \leq n\) form a chain in \(\mathbb{K}^n\) (this follows from the definition of \(\mu_h\)).

Suppose for a contradiction that there exist \(\bar{x} = (x_1, \ldots, x_n)\) and \(\bar{y} = (y_1, \ldots, y_n)\) such that \(\phi(\bar{x}) \wedge \phi(\bar{y}) \neq \phi(\bar{x} \wedge \bar{y})\). Since \(\phi\) is isotone it implies that \(\phi(\bar{x} \wedge \bar{y})\) is distinct from \(\phi(\bar{x})\) and \(\phi(\bar{y})\). However, there exist \(j\) and \(r\) such that
\[
(g_1 M_T(\bar{x}), \ldots, g_n M_T(\bar{x})) = (a_{1j}, \ldots, a_{nj})
\]
and
\[
(g_1 M_T(\bar{y}), \ldots, g_n M_T(\bar{y})) = (a_{1r}, \ldots, a_{nr}).
\]
Since these \(n\)-tuples are comparable, assume without loss of generality that
\[
(g_1 M_T(\bar{x}), \ldots, g_n M_T(\bar{x})) \leq (g_1 M_T(\bar{y}), \ldots, g_n M_T(\bar{y})).
\]

23
Hence
\[
\phi(\overline{x} \land \overline{y}) = f(g_1 M_T(\overline{x} \land \overline{y}), \ldots, g_n M_T(\overline{x} \land \overline{y})) \\
= f(g_1 M_T(\overline{x}) \land g_1 M_T(\overline{y}), \ldots, g_n M_T(\overline{x}) \land g_n M_T(\overline{y})) \\
= f(g_1 M_T(\overline{x}), \ldots, g_n M_T(\overline{x})) \\
= \phi(\overline{x}),
\]
and this is a contradiction. Hence \(\phi\) preserves the meet and we are done.

\[\square\]

Theorem 3.15 Let \(C\) be a clone in the interval \([M, Pol \leq]\). Suppose that \(C\) is not one of \(M, Pol \leq, P_h, Pol \land^c \cap P_h, Pol \land^c \cap P_h, Pol \mu_h\), for any \(h\). Then \(C\) is contained in an interval \([P_h, Pol \mu_{h+1}]\) for some \(3 \leq h \leq k - 1\).

Proof. By Corollary 3.10 \(C\) can be contained neither in \(Pol \land^c\) nor in \(Pol \land^c\). Hence \(C\) contains \(Pol \land^c \cap P_2\) and \(Pol \land^c \cap P_2\), by Lemma 3.13. Then by Theorem 3.12 \(C\) contains \(P_2\), which is equal to \(Pol \mu_3\) by Lemma 2.5 (4). Since \(C\) is not equal to \(Pol \mu_3\), it follows by Theorem 3.14 that \(C\) contains \(P_3\). Now let \(h\) be the largest integer such that \(P_h \subseteq C\). Clearly \(h \geq 3\). Since \(C\) does not contain \(P_{h+1}\), we conclude from Theorem 3.14 again that \(C\) is contained in \(Pol \mu_{h+1}\), which concludes the proof.

\[\square\]

4 The case \(k = 4\)

(In the following we shall assume throughout that \(k = 4\).) We shall now prove Theorem 1.1. By Theorem 3.15 it will suffice to prove that \(Pol \mu_4\) covers \(P_3\) (Lemma 4.5). We start with a few basic remarks concerning relations \(\theta\) such that \(P_3 \subseteq Pol \theta\).

Let \(\theta\) be an irredundant relation of arity \(r \geq 2\) such that \(M \subseteq Pol \theta\). By Lemma 2.1, there exists a partial ordering \(\langle \underline{r}, \sqsubseteq \rangle\) of the indices \(\{1, 2, \ldots, r\}\) such that \(i \sqsubseteq j\) iff \(\theta_{ij} \leq \). By permuting the indices of \(\theta\) (this does not affect the clone \(Pol \theta\)) we may assume that the natural ordering \(\underline{r}\) is a linear extension of \(\langle \underline{r}, \sqsubseteq \rangle\). We shall say that an \(r\)-tuple \(\overline{a} = (a_1, \ldots, a_r)\) respects the ordering of \(\theta\) if \(a_i \leq a_j\) whenever \(i \sqsubseteq j\).

24
Lemma 4.1 Let $M \subseteq \text{Pol } \theta$, where θ is an irredundant r-ary relation. Then $P_h \subseteq \text{Pol } \theta$ if and only if θ contains every \overline{a} which respects the ordering of θ and $|\{a_1, \ldots, a_r\}| \leq h$.

Proof. (\Rightarrow) For $i \subseteq j$ ($i \neq j$) we may find an element $w \in \theta$ such that $w_i < w_j$. For every pair of incomparable elements i and j in $\langle \overline{r}, \sqsubseteq \rangle$, we may find elements u and v in θ such that $u_i < v_j$ and $v_i > v_j$. Consider the matrix X whose columns are all these tuples, say of size $r \times m$. Certainly the rows of X form a subposet of k^m isomorphic to $\langle \overline{r}, \sqsubseteq \rangle$.

Let $\overline{a} = (a_1, \ldots, a_r)$ be an r-tuple that respects the ordering of θ and such that $|\{a_1, \ldots, a_r\}| \leq h$. Then the map f which sends row i of matrix X to a_i is isotone. By the extension lemma, there is an isotone map g that extends f and whose image contains at most h elements. Hence this map is in P_h.

Since the columns of X are in θ, it follows that \overline{a} must also be in θ.

(\Leftarrow) Let $f \in P_h$. If f is unary then we are done. Otherwise let Y be a matrix whose columns are in θ. We must show that $f(Y) \in \theta$. Since f is isotone, $f(Y)$ respects the ordering of θ, and since f is not essentially unary $f(Y)$ contains at most h distinct entries. Hence $f(Y) \in \theta$ and we are done.

The following lemma follows from a more general result [5] we shall discuss in the next section. At any rate, the proof of this very special case is not difficult. Let $Q = \langle \overline{4}, \sqsubseteq \rangle$ be an ordering of $\{1, 2, 3, 4\}$. Consider the 4-ary relation μ_Q consisting of all (a_1, a_2, a_3, a_4) that satisfy (i) $a_i \leq a_j$ if $i \subseteq j$ and (ii) $|\{a_1, a_2, a_3, a_4\}| \leq 3$. Notice that $\mu_4 = \mu_Q$ when Q is the usual ordering of 4. The next lemma states that an operation preserves μ_Q if and only if f is unary or the image of any copy of Q under f contains at most 3 elements.

Lemma 4.2 An n-ary operation f is in $\text{Pol } \mu_Q$ if and only if either (i) f is unary or (ii) $|f(\epsilon(Q))| \leq 3$ for any isotope map $\epsilon : Q \rightarrow 2^n$.

Let θ be an r-ary relation such that $P_3 \subseteq \text{Pol } \theta \subseteq \text{Pol } \mu_4$. Let $\langle \overline{r}, \sqsubseteq \rangle$ denote the ordering of the indices described above. Let \overline{a} be an r-tuple. We shall say that \overline{a} is fine for θ if it satisfies the following condition: if $a_i = 2$ and $a_j = 3$ then i and j are incomparable in $\langle \overline{r}, \sqsubseteq \rangle$. 25
Lemma 4.3 Let θ be an irredundant r-ary relation such that $P_{3} \subseteq \text{Pol} \theta$. Then $\text{Pol} \mu_4 \subseteq \text{Pol} \theta$ if and only if θ contains every $\bar{\alpha}$ which respects the ordering of θ and is fine for θ.

Proof. (\Rightarrow) Suppose that $\text{Pol} \mu_4 \subseteq \text{Pol} \theta$. Notice that $M \subseteq \text{Pol} \theta$. Proceeding just as in the proof of Lemma 4.1 we may find a matrix X whose columns are in θ and whose rows $\{\bar{\pi}_1, \ldots, \bar{\pi}_r\}$ form a subposet of k^n isomorphic to $\langle \mathcal{L}, \sqsubseteq \rangle$, the ordering of θ. Let $\bar{\pi}$ be an r-tuple which respects the ordering of θ and which is fine for θ. Define an operation as follows:

$$f(\bar{\gamma}) = \begin{cases} a_i & \text{if } \bar{\gamma} = \bar{\pi}_i, \\
4 & \text{if } \bar{\gamma} > \bar{\pi}_i \text{ with } a_i > 1, \\
1 & \text{otherwise.} \end{cases}$$

Clearly this map is isotone and $f(X) = \bar{\pi}$. Since $\bar{\pi}$ is fine for θ, f maps chains to at most 3 elements and hence by Lemma 4.2 it belongs to $\text{Pol} \mu_4$. Since the columns of X are in θ it follows that $\bar{\pi} \in \theta$.

(\Leftarrow) Suppose that θ contains all tuples which satisfy the desired conditions. By Lemma 4.1 θ also contains every $\bar{\pi}$ which respects its ordering and such that $|\{a_1, \ldots, a_r\}| \leq 3$. Let $f \in \text{Pol} \mu_4$. If f is unary then we are done. Otherwise we may suppose by Lemma 4.2 that f maps every chain to at most 3 elements. Let X be a matrix with columns in θ. We must show that $\bar{\pi} = f(X) \in \theta$. Clearly $\bar{\pi}$ respects the ordering of θ since f is isotone. If $|\{a_1, \ldots, a_r\}| \leq 3$ then we are done, so we may suppose that f is onto. In particular, it is clear that $f(1, \ldots, 1) = 1$ and $f(4, \ldots, 4) = 4$. Then $\bar{\pi}$ must be fine for θ; indeed, suppose the contrary so that $a_i = 2$ and $a_j = 3$ where i and j are comparable in $\langle \mathcal{L}, \sqsubseteq \rangle$. Since f is isotone this implies that $i \sqsubseteq j$, which means that $\bar{\pi}_i \leq \bar{\pi}_j$ where $\bar{\pi}_l$ denotes the l-th row of X. But then f maps the chain $\{(1, \ldots, 1), \bar{\pi}_i, \bar{\pi}_j, (4, \ldots, 4)\}$ onto 4 elements, a contradiction.

We define two relations of arity 4 on k: let ξ consist of all 4-tuples (a_1, a_2, a_3, a_4) such that (i) $a_1 \leq a_i \leq a_4$ for every i and (ii) $|\{a_1, a_2, a_3, a_4\}| \leq 3$. Let $\beta = \xi \cup \{(1, 3, 2, 4)\}$. (Note that $\xi = \mu_Q$ where Q is described by $1 \sqsubseteq i \sqsubseteq 4$ for all i).

Lemma 4.4 $\text{Pol} \xi = \text{Pol} \beta = P_3$.

26
Proof. By Lemma 4.1 we have that $P_3 \subseteq Pol\xi$ and $P_3 \subseteq Pol\beta$. Next we show that $Pol\xi \subseteq P_3$ using Lemma 4.2. Let $f \in Pol\xi$; if f is unary we are done. Otherwise, suppose for a contradiction that f is onto. Then certainly $f(1, \ldots, 1) = 1$ and $f(4, \ldots, 4) = 4$ and it follows that f will either map a chain or a copy of Q onto 4 elements, which is impossible.

Now suppose that there is some f in $Pol\beta$ which is not in $Pol\xi$. This means there exists a matrix X with columns in ξ such that $f(X)$ is not in ξ. Since $f \in Pol\beta$ and β contains ξ it follows that $f(X) = (1, 3, 2, 4)^T$. Now consider the matrix Y obtained from X by exchanging the two middle rows. Clearly the columns of Y are in ξ and hence in β; however, $f(Y) = (1, 2, 3, 4)^T$ which is not in β, a contradiction.

\[\]

Lemma 4.5 Let C be a clone such that $P_3 \subseteq C \subseteq Pol\mu_4$. Then $C = P_3$ or $C = Pol\mu_4$.

Proof. We may write $C = \cap_{\theta_i \in \theta} Pol\theta_i$ where each θ_i is irredundant. If $C \neq Pol\mu_4$ then there is some i such that $Pol\mu_4 \not\subseteq Pol\theta_i$. For convenience let $\theta = \theta_i$. We shall show that $Pol(\theta, \leq) = P_3$, from which $C = P_3$ follows. Let r denote the arity of θ and let $\langle [\xi, \sqsubseteq'] \rangle$ denote the partial ordering of the indices of θ. By Lemma 4.1 θ must contain every θ which respects this ordering and such that $|\{b_1, \ldots, b_r\}| \leq 3$. In particular $r \geq 4$. By Lemma 4.3 there exists a tuple $\vec{a} = (a_1, a_2, \ldots, a_r)$ which respects the ordering of θ and which is fine for θ such that $\vec{a} \not\in \theta$. We construct a 4-ary relation as follows: let ρ consist of all tuples $\vec{x} = (x_1, x_2, x_3, x_4)$ such that $(x_{a_1}, x_{a_2}, \ldots, x_{a_r}) \in \theta$. It is clear that $Pol\theta \subseteq Pol\rho$.

Claim 1. $(1, 2, 3, 4) \not\in \rho$.

Indeed, if $x_i = i$ for all i then $(x_{a_1}, x_{a_2}, \ldots, x_{a_r}) = (a_1, a_2, \ldots, a_r)$ which is not in θ.

Let $\langle [\xi, \sqsubseteq'] \rangle$ denote the partial ordering of the indices of ρ. Also, let $Q = \langle [\xi, \sqsubseteq] \rangle$ denote the partial ordering defined by $1 \sqsubseteq i \sqsubseteq 4$ for all i (i.e. this is the ordering of the relation ξ defined earlier).

Claim 2. $\langle [\xi, \sqsubseteq'] \rangle$ admits $\langle [\xi, \sqsubseteq] \rangle$ as an extension, i.e. if $i \sqsubseteq' j$ then $i \sqsubseteq j$.

It is easy to see it suffices to show that $(1, 2, 3, 3)$ and $(1, 3, 2, 3)$ belong to ρ. By the definition of ρ, if $(x_{a_1}, x_{a_2}, \ldots, x_{a_r}) \in \theta$ then $\vec{x} = (1, 2, 3, 3) \in \rho$. Since there are only three distinct entries, it suffices to prove that \vec{x} respects

27
the ordering of θ. Now clearly $x_j = a_j$ if $j = 1, 2, 3$ and $x_4 = 3$ implies that π is obtained from π' by replacing occurrences of 4 by 3. If $i \preceq j$ then $a_i \leq a_j$ and hence $x_i \leq x_j$. Now consider the case of $(1, 3, 2, 3)$. As above it suffices to show that π respects the ordering of θ. Now π is obtained from π' as follows: replace all occurrences of 2 by 3 and occurrences of 3 by 2, then replace all occurrences of 4 by 3. Let $i \preceq j$. Then $a_i \leq a_j$ and since π' is fine for θ, either $a_i \neq 2$ or $a_j \neq 3$. It is easy to see that $x_i \leq x_j$ (the correspondence $a_i \mapsto x_i$ is order-preserving except for the pair $(2, 3)$).

We construct a 4-ary relation as follows: let γ consist of all (x_1, x_2, x_3, x_4) in ρ such that $x_1 \leq x_i \leq x_4$ for all i. Clearly $\Pol(\theta, \leq) \subseteq \Pol \gamma$. Hence to finish our proof it will suffice to prove $\Pol \gamma = P_3$. To do this, we prove that γ is one of ξ or β and invoke Lemma 4.4.

Claim 3. $\gamma = \xi$ or $\gamma = \beta$.

Indeed: by Claim 2 and its proof, it is easy to see that the ordering of γ is Q. By Lemma 4.1 γ contains every tuple that respects Q and has at most 3 entries. The only other tuples that can be in γ are $(1, 2, 3, 4)$ and $(1, 3, 2, 4)$. By Claim 1, $(1, 2, 3, 4) \notin \gamma$. Hence $\gamma = \xi$ if it does not contain $(1, 3, 2, 4)$ and $\gamma = \beta$ otherwise.

5 Comments on the structure of the interval for $k \geq 5$

It appears that the structure of the interval $[M, \Pol \leq]$ is much more complicated for $k \geq 5$ than the cases $k = 3$ and $k = 4$ would let us believe. Indeed, consider the following generalisation of the relation μ_h: let $3 \leq r$ and $h \geq 2$. Let $Q = \langle L, \sqsubseteq \rangle$ be a partial ordering and define $\mu_{Q,h}$ as the set of all r-tuples π that respect the ordering Q and such that $|\{a_1, \ldots, a_r\}| \leq h$. It is clear that we may suppose that $h < \max\{r, k\}$, otherwise $\Pol \leq$ is contained in $\Pol \mu_{Q,h}$. If Q is an $h + 1$-element chain then of course we find $\mu_{Q,h} = \mu_{h+1}$ and if Q is an antichain then $\Pol \mu_{Q,h}$ is a Burle clone. From now on we shall assume without loss of generality that there is always at least some comparability in Q.

28
Lemma 5.1 Let $\mu_{Q,h} = \cap_{\alpha \in A} \text{Pol} \, \alpha$ where A is the set of all restrictions of $\mu_{Q,h}$ to $h + 1$ indices. Moreover, each $\alpha \in A$ is of the form $\alpha = \mu_{Q,h}$ for some partial ordering Q'.

Proof. The inclusion \subseteq is trivial. Now let f be an n-ary operation that preserves every $\alpha \in A$ and let X be an $r \times n$ matrix whose columns are in $\mu_{Q,h}$. Since Q is non-trivial f is isotone. Hence $f(X)$ respects Q. If $|f(X)| > h$ then there must be a subset I of r with $h + 1$ elements such that $|f(X')| > h$ where X' is the matrix obtained from X by deleting rows whose index is not in I. Hence f does not preserve α, the restriction of $\mu_{Q,h}$ to I, and this is a contradiction.

For the second statement: Let I be a subset of \mathbb{r} with $h + 1$ elements. We prove that $(\mu_{Q,h})^I = \mu_{Q',h}$ where Q' is the restriction of Q to I. The inclusion \subseteq is easy. Now let \overline{b} respect the ordering Q' and $|\{b_1, \ldots, b_{h+1}\}| \leq h$. Consider the partial map $i \mapsto b_i$ from \mathbb{r} to \mathbb{k}. By the extension lemma, there exists an isotone map $i \mapsto a_i$ from \mathbb{r} to \mathbb{k} that extends \overline{b} and such that $\pi \in \mu_{Q,h}$.

If Q is an ordering of $h + 1$ then we denote $\mu_{Q,h}$ simply by μ_Q.

Lemma 5.2 Let Q be an ordering of $h + 1$. Then $\mu_Q = \cap_{Q' \in \mathbb{B}} \text{Pol} \, \mu_{Q'}$ where \mathbb{B} is the set of all bounded extensions Q' of Q.

Proof. As in the previous result we need only prove that if f is an n-ary operation that preserves μ_Q for every $Q' \in \mathbb{B}$ then f preserves μ_Q. Certainly f is isotone. Let X be an $(h + 1) \times n$ matrix whose columns are in μ_Q. Then $f(X)$ respects Q. Now suppose that $|f(X)| = h + 1$. Let π_i and π_j be the rows of X such that $f(\pi_i) = \min \{f(X)\}$ and $f(\pi_j) = \max \{f(X)\}$. Consider the new matrix X' obtained from X by replacing π_i by the tuple (u_1, \ldots, u_n) where u_l is the least element appearing in column l, and replacing π_j by the tuple (v_1, \ldots, v_n) where v_l is the greatest element appearing in column l. We claim that the columns of X' are in μ_Q. Since f is isotone and one-to-one on X it is clear by definition of i and j that $l \subset i$ for no l and $j \subset l$ for no l. It follows that each column respects Q. If column l of X' is equal to column l of X then of course it is in μ_Q; otherwise it means that column l of X' must contain a repetition and hence is in μ_Q. Now consider the ordering Q'

29
obtained from Q by adding the comparibilities $i \sqsubseteq m \sqsubseteq j$ for all m. This is obviously a bounded extension of Q, and it is clear that the columns of X' are all in $\mu_{Q'}$. But since f is isotone it is clear that $|f(X')| = h + 1$ so $f(X') \notin \mu_Q$, a contradiction.

There is a nice characterisation of the operations in $Pol \mu_{Q,h}$ which helps in comparing these clones. It is a generalisation of a result of Jablonskii [2] (see also [10], p. 152) which we mentioned before Lemma 4.2. Notice that the two previous lemmas allow us to reduce the proof of this result to the case $Pol \mu_{Q'}$ where Q' is bounded.

Lemma 5.3 [5] An n-ary operation f is in $Pol \mu_{Q,h}$ if and only if either (i) f is unary or (ii) $|f(e(Q))| \leq h$ for any isotone map $e: Q \to (h + 1)^n$.

These results show that it suffices to consider clones of the form $Pol \mu_{Q'}$ where Q' is a bounded ordering of \mathbb{R} if we want to classify the clones $Pol \mu_{Q,h}$. Moreover, notice that as a result, there are only finitely many clones $Pol \mu_{Q,h}$. On the other hand, it would appear that these are not the only clones in the interval $[M, Pol \leq]$. Furthermore, for large k, even the poset of clones $Pol \mu_{Q'}$ seems difficult to characterize. As a simple example, consider, for any $k \geq 6$, the partial ordering Q of $\{1, 2, 3, 4, 5\}$ given by $1 \sqsubseteq 2 \sqsubseteq 3 \sqsubseteq 4$. It is a simple exercise to verify that $P_4 \subset Pol \mu_Q \subset Pol \mu_5$, and that in fact the clones $Pol \mu_Q$ and $P_5 \cap Pol \mu_5$ are incomparable elements of $[M, Pol \leq]$.

References

Andrei Krokhin
Department of Algebra and Discrete Mathematics
Ural State University
Ekaterinburg 620083
Russia

Benoit Larose
Department of Mathematics
Champlain Regional College
900 Riverside St-Lambert, Qc
Department of Mathematics and Statistics
Concordia University
1455 de Maisonneuve W, Montréal, QC