Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Phylogeny and metabolic scaling in mammals.

Capellini, I. and Venditti, C. and Barton, R.A. (2010) 'Phylogeny and metabolic scaling in mammals.', Ecology., 91 (9). pp. 2783-2793.

Abstract

The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centres on whether the underlying power law determining metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ('Kleiber's Law'). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the Metabolic Theory of Ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models however fail to control for phylogeny. We used phylogenetic generalised least squares models to estimate allometric slopes for both basal metabolic rates (BMR) and field metabolic rates (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts are met. Analyses that assumed no phylogenetic signal in the data (species level analysis) or a strong phylogenetic signal (independent contrasts) returned estimates of allometric slopes that were erroneous in 30% and 50% of cases respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.

Item Type:Article
Keywords:Allometry, Basal metabolic rate, Field metabolic rate, Kleiber's law, Metabolic theory of ecology (MTE).
Full text:PDF - Published Version (439Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1890/09-0817
Publisher statement:© 2010 by the Ecological Society of America.
Record Created:12 Apr 2010 09:35
Last Modified:06 Oct 2010 12:09

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library