We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Modelling grain-recycling zoning during metamorphism.

Pearce, M. A. and Wheeler, J. (2010) 'Modelling grain-recycling zoning during metamorphism.', Journal of metamorphic geology, 28 (4). pp. 423-437.


Chemical zoning, recorded by grain growth during metamorphism, is a key source of information about P–T–t paths. Interpretation of these data must be carried out using appropriate models and recognizing their inherent assumptions. To assist with defining how zoned minerals form, a set of geometric criteria for three types of chemical zoning developed in minerals (diffusion, growth and grain recycling) is outlined. Re-equilibration of minerals by lattice diffusion causes zoning if the re-equilibration is incomplete. Growth of porphyroblasts is commonly considered in pelites, but in metagranitoids, large monophase domains undergo coarsening by recycling of material from one grain to another as grain boundaries migrate driven by surface energy. This type of grain size increase is termed here 'grain recycling'. Zoning developed during grain recycling due to equilibration of the recycled material with grain-boundary chemistry is termed 'grain-recycling zoning'. Furthermore, short lattice diffusion lengths relative to grain sizes cause metamorphic fractionation because material in the grain cores is not in communication thermodynamically with the rest of the rock. A new model is derived for this sort of grain size increase coupled with metamorphic reactions using Theriak–Domino. An example is given of plagioclase undergoing an increase in anorthite content as epidote breaks down during amphibolite facies metamorphism of a metagranitoid. Agreement between naturally occurring zoning profiles and those derived from modelled P–T–t paths shows that this model can be used to extract metamorphic conditions from rocks which are not accessible using conventional thermobarometry.

Item Type:Article
Keywords:Grain recycling, Metamorphism, Thermodynamic model, Zoning.
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:26 May 2010 11:35
Last Modified:28 May 2010 16:28

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library