Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


Durham Research Online
You are in:

The computational complexity of graph contractions I : polynomially solvable and NP-complete cases.

Levin, A. and Paulusma, Daniel and Woeginger, G.J. (2008) 'The computational complexity of graph contractions I : polynomially solvable and NP-complete cases.', Networks., 51 (3). pp. 178-189.

Abstract

For a fixed pattern graph H, let H-CONTRACTIBILITY denote the problem of deciding whether a given input graph is contractible to H. This paper is part I of our study on the computational complexity of the H-CONTRACTIBILITY problem. We continue a line of research that was started in 1987 by Brouwer and Veldman, and we determine the computational complexity of the H-CONTRACTIBILITY problem for certain classes of pattern graphs. In particular, we pinpoint the complexity for all graphs H with five vertices except for two graphs, whose polynomial time algorithms are presented in part II. Interestingly, in all connected cases that are known to be polynomially solvable, the pattern graph H has a dominating vertex, whereas in all cases that are known to be NP-complete, the pattern graph H does not have a dominating vertex.

Item Type:Article
Keywords:Graph, Edge contraction, Dominating vertex, Computational complexity.
Full text:Full text not available from this repository.
Publisher Web site:http://dx/doi.org/10.1002/net.20214
Record Created:06 Oct 2010 14:35
Last Modified:03 Apr 2013 13:18

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library