Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The evolution of the subglacial landscape of Antarctica.

Jamieson, S.S.R. and Sugden, D.E. and Hulton, N.R.J. (2010) 'The evolution of the subglacial landscape of Antarctica.', Earth and planetary science letters., 293 (1-2). pp. 1-27.

Abstract

The aim is to investigate the evolution of the subglacial landscape of Antarctica using an ice sheet and erosion model. We identify different stages of continental glaciation and model the erosion processes associated with each stage. The model links erosion to the basal thermal regime and indicates that much of the Antarctic interior may have been subject to less than 200 m of erosion. The depth of erosion reflects the presence or absence of warm-based ice and the consistency of ice flow direction. This information, linked with knowledge about landscapes of glaciation in the northern hemisphere and some simple but robust assumptions about initial topography, is used to generate a map of the subglacial Antarctic landscape in which much of the lowland interior resembles the landscapes of areal scouring typical of the Laurentian and Scandinavian shields. Near the continental margins selective linear erosion has overdeepened pre-existing river valleys by as much as 2.8 km. High elevation plateaus adjacent to such drainage systems have survived largely unmodified under cold-based ice. High erosion rates result from steep thermal gradients in basal ice. Mountain regions such as the Gamburtsev Mountains, uplands in Dronning Maud Land and massifs in West Antarctica are likely to bear features of local alpine glaciation. Such landscapes may have been protected under cold-based ice for the last 34 Myrs or possibly longer.

Item Type:Article
Keywords:Landscape evolution, Erosion, Ice sheet, Topography, Antarctica, Model.
Full text:PDF - Accepted Version (4323Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1016/j.epsl.2010.02.012
Publisher statement:NOTICE: this is the author’s version of a work that was accepted for publication in Earth and planetary science letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Earth and planetary science letters, 293, 1-2, 2010,10.1016/j.epsl.2010.02.012
Record Created:13 Oct 2010 15:35
Last Modified:19 Sep 2013 15:42

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library