Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Monte Carlo simulations of electron transport in coupled Si quantum wells.

Crow, G.C. and Abram, R.A. (1999) 'Monte Carlo simulations of electron transport in coupled Si quantum wells.', Semiconductor science and technology., 14 (12). pp. 1107-1113.

Abstract

Coupled wide and narrow tensile strained Si X2-valley quantum wells could provide the basis for an SiGe transistor operating in a velocity modulation mode. Ideally, charge would be rapidly switched between high- (wide) and low- (narrow) mobility channels under the action of an applied gate bias, with little or no modulation of the total channel charge density. With this application in mind, the Monte Carlo technique has been used to simulate in-plane electron transport for a back-doped Si/Si0.85Ge0.15 double-well structure. The equilibrium band profile from the Schottky or oxide top gate to the SiGe virtual substrate is such that electrons are confined to the narrow well when the gate is unbiased. The calculated in-plane mobility is sensitive to the transverse field applied across the quantum well structure - the maximum:minimum mobility ratio is 13:1 at 77 K. At 77 K, a lower mobility in the narrow channel (4000 cm2 V s-1) is mainly due to surface roughness and Coulomb scattering by supply layer impurities. The simulations also predict that mobility modulation would be far less effective at 300 K; scattering by acoustic and inelastic g phonons (LO, TA, LA modes), and consequent distribution across the available subbands (icons/Journals/Common/le" ALT="le" ALIGN="TOP"/>9) of the entire well structure reduces confinement to either the wide or narrow well, and hence the predicted maximum:minimum mobility ratio is less than 2:1.

Item Type:Article
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1088/0268-1242/14/12/317
Record Created:20 Dec 2010 12:05
Last Modified:20 Dec 2010 12:20

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library