We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Remeshing and refining with moving finite elements : application to nonlinear wave problems.

Wacher, Abigail and Givoli, Dan (2006) 'Remeshing and refining with moving finite elements : application to nonlinear wave problems.', Computer modeling in engineering & sciences., 15 (3). pp. 147-164.


The recently proposed String Gradient Weighted Moving Finite Element (SGWMFE) method is extended to include remeshing and refining. The method simultaneously determines, at each time step, the solution of the governing partial differential equations and an optimal location of the finite element nodes. It has previously been applied to the nonlinear time-dependent two-dimensional shallow water equations, under the demanding conditions of large Coriolis forces, inducing large mesh and field rotation. Such effects are of major importance in geophysical fluid dynamics applications. Two deficiencies of the original SGWMFE method are (1) possible tangling of the mesh which causes the method's failure, and (2) no mechanism for global refinement when necessary due to the constant number of degrees of freedom. Here the method is extended in order to continue computing solutions when the meshes become too distorted, which happens quickly when the flow is rotationally dominant. Optimal rates of convergence are obtained when remeshing is applied. The method is also extended to include refinement to enable handling of new physical phenomena of a smaller scale which may appear during the solution process. It is shown that the errors in time are kept under control when refinement is necessary. Results of the extended method for some example problems of water hump release are presented.

Item Type:Article
Keywords:Moving finite elements, Remeshing, global mesh refinement, Shallow water equations, Coriolis, Wave dispersion, Nonlinear waves.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Record Created:27 Jan 2011 11:20
Last Modified:11 Feb 2011 13:27

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library