Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Mathematical and numerical modeling of the AquaBuOY wave energy converter.

Wacher, Abigail and Nielsen, Kim (2010) 'Mathematical and numerical modeling of the AquaBuOY wave energy converter.', Mathematics-in-industry case studies., 2 . pp. 16-33.

Abstract

This paper presents the mathematical modeling and numerical methodology performed prior to the prototype deployment of the AquaBuOY, one of the few wave energy devices that have reached the ocean deployment stage. The combination of numerical computations, and laboratory testing produced some encouraging findings about how the AquaBuOY responds to real wave conditions. However, it also highlighted deficiencies in some of the early modeling, which emphasized the need for a time domain model in realistic wave conditions that includes accurate hydrodynamic and drag coefficients. This paper focuses on the governing equations that model the vertical dynamics of the AquaBuOY and the numerical solutions of these equations in order to predict the absorbed power of the device. Numerical results are presented in the time domain for both regular and irregular wave regimes (realistic wave conditions) as well as compared to experimental data in a regular wave regime. While the two body system is challenging to model, due to the inclusion of variables such as the wave forcing term as well as identifying the non linear damping term along with a linear spring term needed to model the power takeoff system, it does provide a robust tool for wave energy research.

Item Type:Article
Keywords:Wave energy, Industrial mathematical modeling.
Full text:PDF - Published Version (654Kb)
Status:Peer-reviewed
Publisher Web site:http://micsjournal.ca/index.php/mics/article/view/13
Record Created:27 Jan 2011 11:20
Last Modified:15 Mar 2011 12:11

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library