Durham Research Online

Deposited in DRO:
16 March 2011

Version of attached file:
Other

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Further information on publisher’s website:
http://www.icms.org.uk/workshops/mediumflow11

Publisher’s copyright statement:

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Forchheimer equation

By consideration of data such as shown in Figure 1, Forchheimer (1901) suggested the quadratic alternative to Darcy’s Law:

\[\frac{dP}{dx} = -k \left(\rho \mu \frac{u}{\rho g} \right) - \rho \mu \frac{u^2}{2 \rho g} \]

where
- \(k \): permeability [L²]
- \(\mu \): dynamic viscosity [ML⁻¹T⁻¹]
- \(P \): fluid pressure [L¹]
- \(x \): distance [L]
- \(\rho \): fluid density [M/L³]
- \(b \): Forchheimer parameter

From a dimensional analysis Ward (1964) established that

\[b = f(k^{0.5}) \]

From an empirical analysis Geertsma (1974) proposed that

\[b = 0.005 \phi^{-0.5} \]

where \(\phi \) is porosity.

Step-drawdown tests

A common way to test a well is to pump at sequentially increasing rates; a step drawdown test. After a certain amount of time, drawdown in the well, \(s_w \), reaches a quasi-steady value. These drawdowns are plotted against pumping rate, \(Q_w \), and a quadratic is fitted (the Jacob Method):

\[s_w = A Q_w + B Q_w^2 \]

where \(A \) and \(B \) are known as the formation loss and well loss factors, respectively. Comparison with the large - time solution for Forchheimer flow to a well (Mathias et al., 2008)

\[s_w = \frac{Q_w}{4 \pi T} \left(\frac{47}{Sc_r^2} \right)^{0.5772} + \frac{b Q_w^2}{(2.57)^4 r_w g} \]

where
- \(H \): formation thickness [L]
- \(T \): time [T]
- \(T = H \phi \rho \mu [L^2 T^-1] \): transmissivity
- \(S = H \phi (c_r + c_s) / g \): storativity
- \(r_w \): well radius [L]
- \(g \): gravity [L/T²]
- \(c_r, c_s \): rock and fluid compressibility

suggests that \(B = \frac{b}{(2.57)^4 r_w g} \)

so field-scale estimates of \(b \) can be obtained from values of \(B \).

Further reading
