We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

An optimising approach to alternative clustering schemes.

Jessop, A. (2010) 'An optimising approach to alternative clustering schemes.', Central European journal of operations research., 18 (3). pp. 293-309.


Clustering objects into groups is usually done using a statistical heuristic or an optimisation. The method depends on the size of the problem and its purpose. There may exist a number of partitions which do not differ significantly but some of which may be preferable (or equally good) when aspects of the problem not formally contained in the model are considered in the interpretation of the result. To decide between a number of good partitions they must first be enumerated and this may be done by using a number of different heuristics. In this paper an alternative method is described which uses an integer linear programming model having the number and size distribution of groups as objectives and the criteria for group membership as constraints. The model is applied to three problems each having a different measure of dissimilarity between objects and so different membership criteria. In each case a number of optimal solutions are found and expressed in two parts: a core of groups, the membership of which does not change, and the remaining objects which augment the core. The core is found to contain over three quarters of the objects and so provides a stable base for cluster definition.

Item Type:Article
Keywords:ILP, Multicriteria, Statistics, Cluster.
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Publisher statement:The original publication is available at
Record Created:05 May 2011 15:50
Last Modified:17 May 2011 10:03

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library