We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Strategies for spectroscopy on extremely large telescopes - II : diverse-field spectroscopy.

Murray, G.J. and Allington-Smith, J.R. (2009) 'Strategies for spectroscopy on extremely large telescopes - II : diverse-field spectroscopy.', Monthly notices of the Royal Astronomical Society., 399 (1). pp. 209-218.


The fields of view of Extremely Large Telescopes will contain vast numbers of spatial sampling elements (spaxels) as their adaptive optics systems approach the diffraction limit over wide fields. Since this will exceed the detection capabilities of any realistic instrument, the field must be dilutely sampled to extract spectroscopic data from selected regions of interest. The scientific return will be maximized if the sampling pattern provides an adaptable combination of separated independent spaxels and larger contiguous subfields, seamlessly combining integral-field and multiple-object spectroscopy. We illustrate the utility of this diverse-field spectroscopy (DFS) to cosmological studies of galaxy assembly. We show how to implement DFS with an instrument concept: the Celestial Selector. This integrates highly multiplexed monolithic fibre systems and switching networks of the type currently available in the telecommunications industry. It avoids bulky moving parts, whose limitations were noted in Paper I. In Paper III, we will investigate the optimization of such systems by varying the input–output mapping.

Item Type:Article
Keywords:Instrumentation, Spectrographs,
Full text:(NA) Not Applicable
Download PDF
Publisher Web site:
Publisher statement:The definitive version is available at
Date accepted:No date available
Date deposited:No date available
Date of first online publication:September 2009
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar