Mason, James and Hancock, Helen and Close, Helen and Murphy, Jerry and Fuat, Ahmet and de Belder, Mark and Singh, Raj and Teggett, Andrew and Wood, Esther and Brennan, Gill and Hussain, Nehal and Kumar, Nitin and Manshani, Novin and Hodges, David and Wilson, Douglas and Hungin, Pali (2013) 'Utility of biomarkers in the differential diagnosis of heart failure in older people: findings from the Heart Failure In Care Homes (HFinCH) Diagnostic Accuracy Study.', PLoS ONE., 8 (1). e53560.

Further information on publisher’s website:
http://dx.doi.org/10.1371/journal.pone.0053560

Publisher’s copyright statement:
Copyright © 2013 Mason et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Utility of Biomarkers in the Differential Diagnosis of Heart Failure in Older People: Findings from the Heart Failure in Care Homes (HFinCH) Diagnostic Accuracy Study

James M. Mason1*, Helen C. Hancock1, Helen Close1, Jerry J. Murphy2,3, Ahmet Fuat2,3, Mark de Belder4, Raj Singh3, Andrew Teggert5, Esther Wood3, Gill Brennan3, Nehal Hussain4, Nitin Kumar4, Novin Manshani2, David Hodges2, Douglas Wilson1, A. Pali S. Hungin2

1 Durham Clinical Trials Unit, Durham University, Queen’s Campus, Stockton-on-Tees, United Kingdom, 2 School of Medicine, Pharmacy and Health, Durham University, Queen’s Campus, Stockton-on-Tees, United Kingdom, 3 Department of Cardiology, Darlington Memorial Hospital, Darlington, United Kingdom, 4 Department of Cardiology, The James Cook University Hospital, Middlesbrough, United Kingdom, 5 Department of Pathology, The James Cook University Hospital, Middlesbrough, United Kingdom

Abstract

Background: The performance of biomarkers for heart failure (HF) in older residents in long-term care is poorly understood and has not differentiated between left ventricular systolic dysfunction (LVSD) and HF with preserved ejection fraction (HFrEF).

Methods: This is the first diagnostic accuracy study in this population to assess the differential diagnostic performance and acceptability of a range of biomarkers against a clinical diagnosis using portable echocardiography. A total of 405 residents, aged 65–100 years (mean 84.2), in 33 UK long-term care facilities were enrolled between April 2009 and June 2010.

Results: For undifferentiated HF, BNP or NT-proBNP were adequate rule-out tests but would miss one in three cases (BNP: sensitivity 67%, NPV 86%, cut-off 115 pg/ml; NT-proBNP: sensitivity 62%, NPV 87%, cut-off 760 pg/ml). Using higher test cut-offs, both biomarkers were more adequate tests of LVSD, but would still miss one in four cases (BNP: sensitivity 76%, NPV 97%, cut-off 145 pg/ml; NT-proBNP: sensitivity 73%, NPV 97%, cut-off 1000 pg/ml). At these thresholds one third of subjects would test positive and require an echocardiogram. Applying a stricter ‘rule out’ threshold (sensitivity 90%), only one in 10 cases would be missed, but two thirds of subjects would require further investigation. Biomarkers were less useful for HFrEF (BNP: sensitivity 63%, specificity 61%, cut-off 110 pg/ml; NT-proBNP: sensitivity 68%, specificity 56%, cut-off 477 pg/ml). Novel biomarkers (Copeptin, MR-proADM, and MR-proANP) and common signs and symptoms had little diagnostic utility.

Conclusions: No test, individually or in combination, adequately balanced case finding and rule-out for heart failure in this population; currently, in-situ echocardiography provides the only adequate diagnostic assessment.

Trial Registration: Controlled-Trials.com ISRCTN19781227

Introduction

Whilst early, accurate diagnosis and management of heart failure (HF) may substantially improve prognosis, there is evidence to suggest that HF is missed in up to half of cases [1–2]. Although echocardiography is the reference standard for the diagnosis of HF it does not always produce a definitive result, due to difficulties of imaging in individual patients, particularly in older, comorbid populations. Diagnosis ideally requires accurate, accessible, cost-effective and acceptable alternatives to echocardiography [3].

B-type natriuretic peptide (BNP) has been available as a routine laboratory test since 2003 [4,5], however, there is wide variation in cut-off levels, and recognition that the optimal threshold may be age dependent [1,4,6]. A recent European study of nursing-home residents [1] (n = 150) suggested a cut-off for NT-proBNP of 450 pg/ml (sensitivity 71%, specificity 67%) and BNP 100 pg/ml (sensitivity 71%, specificity 70%). Other studies suggest cut-offs ranging from 93–450 pg/ml for NT-proBNP and 40–100 pg/ml for BNP [1,7,8]. Consequently clinical guidelines provide several
appropriate cut-off values would differ from those for the general and/or HFpEF in older people in long-term care and whether NT-pro-BNP, MR-proANP, MR-proADM, Copeptin and the first study to do so. Our aim was to determine whether BNP, biomarkers is needed in older, long-term care populations; this is biomarkers, further evaluation of these easily available, low cost (intermediate (1–3 mg/L), high (CRP have been suggested which stratify risk into low (sensitivity 53%, specificity 76%) [16]. MR-proADM has been evaluated in the 90-day survival prognosis of HF with a suggested cut-off value of 1.905 pmol/L (sensitivity 53%, specificity 76%) [16]. Copeptin has been investigated in patients with HF following acute myocardial infarction. A cut-off value of 25.9 pmol/L was established for predicting one-year mortality (sensitivity 66%, specificity 03%, PPV 40%, NPV 94%) [17]. In patients with coronary heart disease, raised high-sensitivity C-reactive protein (hs-CRP) is an independent risk marker for HF [18,19]. Cut-off values for hs-CRP have been suggested which stratify risk into low (<1 mg/L), intermediate (1.5–3 mg/L), high (>3.0–10 mg/L) [20] and very high (>10 mg/L) [21] categories. Given the uncertain utility of routine biomarkers, further evaluation of these easily available, low cost biomarkers is needed in older, long-term care populations; this is the first study to do so. Our aim was to determine whether BNP, NT-pro-BNP, MR-proANP, MR-proADM, Copeptin and HsCRP could serve as biomarkers for the detection of LVSD and/or HFpEF in older people in long-term care and whether appropriate cut-off values would differ from those for the general population.

Methods

Study Population

The cohort for this nested diagnostic accuracy study were participants in a prevalence study (see [22] for full details) and randomised controlled trial [23]. Between April 2009 and June 2010, 405 residents aged ≥65 years without terminal disease were recruited within 33 care homes in the North East of England. No exclusions were made on the basis of cognitive capacity, comorbidities or immobility. We extracted anonymised demographic details of all eligible residents (including non-participants) in order to assess their representativeness and thus the potential for selection bias (see [22] and Figure 1).

Diagnostic Investigation

Each resident underwent a diagnostic assessment in their care facility, including Mini Mental State Examination [24], demographic details and past medical history, quality of life assessment using EuroQol: EQ-5D [25], electrocardiography, echocardiography, and blood tests. A doctor conducted the physical assessment including blood pressure, heart and respiratory rate, lung signs, displaced apex beat, third heart sound, jugular venous pressure, peripheral oedema, and New York Heart Association classification [26].

Portable echocardiograms (Vivid-i, application software version 6.2.0, system software 2.1.16, 3RS probe) were performed by a British Society of Echocardiography (BSE) accredited physician according to BSE guidelines [27], and electrocardiograms (ECGs; GE MAC 1600, cardiosoft version 6.5) by a trained phlebotomist. On completion of the study 50 echocardiograms were randomly selected and independently reported by an external BSE accredited cardiac physiologist; 100% agreement on LVSD status and valvular function was reached. Echocardiograms, ECGs and clinical assessments were conducted independently and mutually blinded.

Presence or absence of heart failure

The clinical features, ECG and echocardiogram data were reviewed by two independent HF specialists ([JM+AF]). A diagnosis of HF was made according to ESC guidelines [6], requiring objective evidence of a structural or functional abnormality of the heart at rest in the presence of appropriate symptoms and signs. Assessment of left ventricular systolic and diastolic function allowed sub-classification of LVSD and HFpEF [28,29]. If symptoms and signs were absent but there was left ventricular systolic dysfunction, LVSD (without HF) was diagnosed [6].

Left ventricular ejection fraction was calculated by Simpson’s rule and wall motion index using the American Society of Echocardiography 16 segment model [30]. All patients with clinical features and either a LV EF of ≤50% or whose left ventricular systolic function was assessed by ‘eyeball’ to be mildly, moderately or severely impaired, were classified as having HF due to LVSD. Doppler and tissue-doppler measurements of the longitudinal function of the heart were used to determine left ventricular diastolic dysfunction. E/E’ measurements were recorded at both the septum and lateral wall. HFpEF was diagnosed in accordance with ESC guidelines [31] using clinical, echocardiographic and BNP measurements. Patients with clinical features of HF whose LV EF was >50% with E/E’ >15, or those with an equivocal E/E’ (8–15) but BNP >200 or NT-pro BNP >220 pg/ml were diagnosed as having HFpEF. Thus reference standard determinations of LVSD and HFpEF were clinically determined by interpreting echocardiography findings augmented with evidence from guidelines.

Assays and sample processing

Blood samples for BNP were drawn into ethylenediaminetetraacetic acid-treated tubes, then centrifuged at 2,500 rpm for 10 min and stored at −80°C. Plasma BNP was measured in batches on a weekly basis with the Siemens Diagnostics Advia Centaur XP automated immunoaassay analyser. The ADVIA Centaur BNP assay is traceable to an internal standard manufactured using synthetic human BNP (amino acid 77–108). The lower limit of detection (analytical sensitivity) for BNP was <2.0 pg/ml. The intra-assay coefficient of variation was 1.98–1.26% from 35.27–876.34 pg/ml.

Blood samples for NT-proBNP and hs-CRP were drawn into serum-separating tubes and for Copeptin, MR-proADM and MR-proANP into ethylenediaminetetraacetic specimen tubes. Samples were centrifuged at 3000 rpm for 10 minutes, serum and plasma aliquoted into secondary tubes 75×12 mm polypropylene tubes (Sarstedt, Leicester, UK) and stored at −80°C. NT-proBNP was assayed with the Roche Elecsys 2010 (Roche Diagnostics, Lewes, UK) using the Roche NT-proBNP II electrochemiluminescent sandwich assay. The analytical range was 3–55000 pg/ml; the inter-assay and intra-assay variabilities were 4.6–3.8% from 44–
33606 pg/ml and 4.2–2.7% from 44–33606 pg/ml respectively. Hs-CRP was assayed on the Siemens Advia 2400 Chemistry analyser (Siemens Healthcare Diagnostics, Frimley, UK) using the Siemens wide range CRP latex-enhanced immunoturbidimetric assay. The analytical range for hs-CRP was 0.03–158 mg/L; the inter-assay and intra-assay variabilities were 4.9–7.8% from 2.25–49.96 mg/L and 3.2–5.2% from 2.25–49.96 mg/L respectively.

Copeptin, MR-proADM and MR-proANP were assayed on the Brahms Kryptor Compact analyser (Brahms UK Ltd, Bottisham, UK), utilising the Time Resolved Amplified Crytate Emission immunofluorescent assay principle. The analytical range for Copeptin was 4.8–500 pmol/L; the inter-assay and intra-assay variabilities were <15–<8% from 15–20 pmol/L and <17–<6% from 2–50 pmol/L respectively. The analytical range for MR-proADM was 0.05–10 nmol/L; the inter-assay and intra-assay

Figure 1. Flow diagram showing participation and biomarker findings for undifferentiated heart failure.

doi:10.1371/journal.pone.0053560.g001
varieties were <20–6% from 0.2–6 nmol/L and <10–3.5% from 0.2–6 nmol/L respectively. The analytical range for MR-proANP 2.1–1000 pmol/L; the inter-assay and intra-assay variabilities were $\leq 6.5\%$ from 0.2–6 nmol/L and ≤ 4.5–3.5% from 10–1000 pmol/L respectively.

Data analysis

Descriptive statistics summarised participants' characteristics, HF status, and biomarker values. The proportion of correct diagnoses of LVSD and HFpEF in the biomarker groups were compared using Fisher's exact test. Other categorical variables, expressed as numbers and percentages, were compared using chi-square tests. Continuous variables were expressed as mean (standard deviation, range) and compared with an unpaired 2-sided Student t test when normally distributed. Normality was determined using the software program SPSS (version 19), using the Shapiro-Wilk test. Subgroup analysis explored echocardiography as the reference standard with and without clinical signs (including biomarkers) in the diagnosis of HFpEF.

Presence of clinically-assessed (echocardiographically-informed) LVSD and HFpEF were the principal end-points against which each diagnostic test was evaluated. Receiver operator curves were generated for each measure, with area under curve (AUC) estimates interpreted as a measure of the potential utility of each test, and test performance explored for optimal predictive values. ‘Optimal’ thresholds were determined as those providing the best balance of sensitivity and specificity to balance false positive and negative findings.

Ethics statement

The study complies with the 1975 Declaration of Helsinki; the study received prior local research management and governance and national ethics approvals from Leeds West REC (Reference: 08/H1307/96). All participants provided informed consent prior to participation.

Results

A total of 405 participants were screened, with a mean age of 84.2 y (SD 7.2, range 65–100 y). Of the total, 294 (74%) were female; all participants were white European; 393 (99%) were white British. There were four unsuccessful venepuncture attempts and six participants were excluded because of incomplete echocardiography data. A total of 399 participants were included in the final analysis. Study participants and non-participants showed similar baseline demographic characteristics (see [22]). Of 399 participants, 34 (8.5%) were diagnosed with LVSD: 19 (56%) mild, 9 (27%) moderate, and 6 (18%) severe; 3 with asymptomatic LVSD; 57 (14.3%) participants were diagnosed with HFpEF, of these 46 (81%) had E/E’ >15.

Individual blood test findings

BNP and NT-proBNP levels were compared between patients with heart failure (LVSD or HFpEF) and those without. BNP values were lower in patients without HF (112 pg/ml, SD 121) than in patients with LVSD (406 pg/ml SD 413, $p = <0.001$), or in patients with HFpEF (161 pg/ml, SD 107, $p = 0.003$; see Table 1). NT-proBNP values were lower in those without HF (764 pg/ml, SD 1280) than in patients with LVSD (3910 pg/ml, SD 6065, $p = 0.006$), or HFpEF (1300 pg/ml, SD 1604, $p = 0.020$). Among patients diagnosed with LVSD, BNP and NT-proBNP values were consistently and significantly associated with disease severity (BNP mean for mild: 270 pg/ml ($p = <0.001$), moderate 680 pg/ml ($p = <0.001$) and severe...
disease 428 pg/ml (p = <0.001); NTproBNP mean for mild: 2034 pg/ml (p = 0.037), moderate 9296 pg/ml (p = <0.001) and severe disease 3146 pg/ml (p = 0.034).

Compared with patients without heart failure, novel biomarker levels for MR-proADM and MR-proANP were statistically significantly higher in both LVSD (p = 0.013, p = 0.001 respectively) and HFpEF (p = 0.022, p = 0.001 respectively) groups. Mean differences were non-significant for Copeptin for LVSD (p = 0.263) and HFpEF groups (p = 0.229).

Using AUC as a screening measure for test utility, BNP (AUC 0.80) and NT-proBNP (AUC 0.78) suggested potentially worthwhile tests for LVSD but not for HFpEF (see Table 1). Although there were significant differences in mean values for some of the other biomarkers evaluated, none had adequate potential utility as tests to diagnose LVSD or HFpEF in this population.

The relationship between BNP and NT-proBNP threshold values and test accuracy in identifying LVSD (n = 34) is shown in Figure 2. A BNP threshold value of 145 pg/ml had sensitivity 76% and specificity 75% (PPV 22%, NPV 97%). A NT-proBNP value of 1000 pg/ml had sensitivity 73% and specificity 76% (PPV 22%, NPV 97%). For comparison, published general population cut-off values [9] are included (BNP: 400 pg/ml; NT-pro BNP: 2000 pg/ml), and miss more than half of cases of LVSD (sensitivity <50%).

For LVSD, with BNP at a cut-off of 145 pg/ml, 71% of participants would test negative and the test would have been correct (NPV) in 97% of these (see Table 2). Only 29% of subjects would have been selected for echocardiographic investigation. However, a test sensitivity of 76% means that one in four cases of LVSD would be missed; for our study sample, this cut off would have missed eight patients with LVSD, of whom six had mild, one moderate and one severe LVSD.

The relationship between Copeptin, MR-proADM, and MR-proANP cut-off values and test accuracy in identifying LVSD is shown in Figure 3. Of these novel biomarkers, MR-proANP performed best, although not as well as BNP or NT-proBNP. A MR-proANP threshold value of 274 pmol/ml would rule out LVSD in 70% of subjects (with NPV 95%) but miss 30% of cases (sensitivity 61%; see Table 2).

No biomarker provided an accurate test for HFpEF (n = 57) irrespective of E/E’ diagnostic cut-off. For BNP and NT-proBNP optimal cut-offs were lower when screening for HFpEF compared to LVSD (see Table 2). A BNP cut-off of 110 pg/ml would reliably rule out HFpEF in 58% of subjects (with NPV 95%) but miss one in three cases (sensitivity 63%). Of the new biomarkers MP-proANP was most promising: at a cut-off of 218 pmol/ml, MP-proANP would reliably rule out HFpEF in 55% of subjects (NPV 96%) missing 30% of cases (sensitivity 70%).

For undifferentiated HF (LVSD or HFpEF, n = 91), BNP at a cut-off of 115 pg/ml, had a sensitivity of 67% and specificity 68% (PPV 38%, NPV 88%), and would have missed 30 cases (33%, see Table 2 and Figure 1). A NT-proBNP value of 760 pg/ml had sensitivity 62% and specificity 75% (PPV 42%, NPV 87%).
Table 2. Diagnostic test performance of diagnostic markers, signs and symptoms.

<table>
<thead>
<tr>
<th></th>
<th>Threshold value</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive Predictive Value</th>
<th>Negative Predictive Value</th>
<th>Proportion testing Positive</th>
<th>Proportion testing Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either LVSD OR HFPEF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNP</td>
<td>115 pg/ml</td>
<td>67%</td>
<td>68%</td>
<td>38%</td>
<td>88%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>760 pg/ml</td>
<td>62%</td>
<td>75%</td>
<td>42%</td>
<td>87%</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>Copeptin</td>
<td>9.5 pmol/L</td>
<td>55%</td>
<td>54%</td>
<td>26%</td>
<td>80%</td>
<td>47%</td>
<td>53%</td>
</tr>
<tr>
<td>MR-proADM</td>
<td>0.90 nmol/L</td>
<td>67%</td>
<td>58%</td>
<td>32%</td>
<td>86%</td>
<td>47%</td>
<td>53%</td>
</tr>
<tr>
<td>MR-proANP</td>
<td>225 pmol/L</td>
<td>67%</td>
<td>64%</td>
<td>36%</td>
<td>87%</td>
<td>42%</td>
<td>58%</td>
</tr>
<tr>
<td>ECG</td>
<td>Abnormal</td>
<td>70%</td>
<td>50%</td>
<td>29%</td>
<td>85%</td>
<td>54%</td>
<td>46%</td>
</tr>
<tr>
<td>Previous MI</td>
<td>-</td>
<td>17%</td>
<td>93%</td>
<td>42%</td>
<td>79%</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>BNP (no previous MI)</td>
<td>93 pg/ml</td>
<td>75%</td>
<td>60%</td>
<td>36%</td>
<td>89%</td>
<td>46%</td>
<td>54%</td>
</tr>
<tr>
<td>NT-proBNP (no previous MI)</td>
<td>488 pg/ml</td>
<td>71%</td>
<td>62%</td>
<td>36%</td>
<td>88%</td>
<td>44%</td>
<td>56%</td>
</tr>
<tr>
<td>MICE*</td>
<td>5 or above</td>
<td>56%</td>
<td>69%</td>
<td>35%</td>
<td>84%</td>
<td>20%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>3 or above</td>
<td>81%</td>
<td>48%</td>
<td>32%</td>
<td>90%</td>
<td>37%</td>
<td>63%</td>
</tr>
<tr>
<td>LVSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNP</td>
<td>145 pg/ml</td>
<td>76%</td>
<td>75%</td>
<td>22%</td>
<td>97%</td>
<td>29%</td>
<td>71%</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>1000 pg/ml</td>
<td>73%</td>
<td>76%</td>
<td>22%</td>
<td>97%</td>
<td>28%</td>
<td>72%</td>
</tr>
<tr>
<td>Copeptin</td>
<td>8.5 pmol/L</td>
<td>68%</td>
<td>51%</td>
<td>11%</td>
<td>95%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>MR-proADM</td>
<td>0.88 nmol/L</td>
<td>64%</td>
<td>51%</td>
<td>11%</td>
<td>94%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>MR-proANP</td>
<td>274 pmol/L</td>
<td>61%</td>
<td>73%</td>
<td>17%</td>
<td>95%</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>ECG</td>
<td>Abnormal</td>
<td>85%</td>
<td>48%</td>
<td>13%</td>
<td>97%</td>
<td>54%</td>
<td>46%</td>
</tr>
<tr>
<td>Previous MI</td>
<td>-</td>
<td>24%</td>
<td>92%</td>
<td>22%</td>
<td>93%</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>BNP (no previous MI)</td>
<td>145 pg/ml</td>
<td>80%</td>
<td>76%</td>
<td>23%</td>
<td>98%</td>
<td>29%</td>
<td>71%</td>
</tr>
<tr>
<td>NT-proBNP (no previous MI)</td>
<td>1000 pg/ml</td>
<td>76%</td>
<td>77%</td>
<td>24%</td>
<td>97%</td>
<td>27%</td>
<td>73%</td>
</tr>
<tr>
<td>MICE*</td>
<td>5 or above</td>
<td>65%</td>
<td>66%</td>
<td>15%</td>
<td>95%</td>
<td>37%</td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td>3 or above</td>
<td>82%</td>
<td>43%</td>
<td>12%</td>
<td>96%</td>
<td>59%</td>
<td>41%</td>
</tr>
<tr>
<td>HFPEF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNP</td>
<td>110 pg/ml</td>
<td>63%</td>
<td>61%</td>
<td>13%</td>
<td>95%</td>
<td>42%</td>
<td>58%</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>477 pg/ml</td>
<td>68%</td>
<td>56%</td>
<td>13%</td>
<td>95%</td>
<td>48%</td>
<td>52%</td>
</tr>
<tr>
<td>Copeptin</td>
<td>10 pmol/L</td>
<td>53%</td>
<td>54%</td>
<td>10%</td>
<td>93%</td>
<td>47%</td>
<td>53%</td>
</tr>
<tr>
<td>MR-proADM</td>
<td>0.96 nmol/L</td>
<td>63%</td>
<td>61%</td>
<td>13%</td>
<td>95%</td>
<td>42%</td>
<td>58%</td>
</tr>
<tr>
<td>MR-proANP</td>
<td>218 pmol/L</td>
<td>70%</td>
<td>59%</td>
<td>14%</td>
<td>96%</td>
<td>45%</td>
<td>55%</td>
</tr>
<tr>
<td>ECG</td>
<td>Abnormal</td>
<td>61%</td>
<td>47%</td>
<td>10%</td>
<td>93%</td>
<td>54%</td>
<td>46%</td>
</tr>
<tr>
<td>Previous MI</td>
<td>-</td>
<td>12%</td>
<td>91%</td>
<td>11%</td>
<td>92%</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>BNP (no previous MI)</td>
<td>110 pg/ml</td>
<td>62%</td>
<td>63%</td>
<td>13%</td>
<td>95%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>NT-proBNP (no previous MI)</td>
<td>477 pg/ml</td>
<td>68%</td>
<td>58%</td>
<td>13%</td>
<td>95%</td>
<td>44%</td>
<td>56%</td>
</tr>
<tr>
<td>MICE*</td>
<td>5 or above</td>
<td>51%</td>
<td>65%</td>
<td>12%</td>
<td>93%</td>
<td>36%</td>
<td>64%</td>
</tr>
</tbody>
</table>
Optimisation for ‘rule-out’

Test thresholds were re-evaluated for BNP and NTpro-BNP requiring 90% sensitivity in detecting LVSD. This was achieved at thresholds for BNP of 64 pg/ml and NT-pro BNP of 312 pg/ml (see Figure 2). For both biomarkers 36% of participants would have tested negative and the test would have been correct (NPV) in 98% of cases. At this threshold only one in 10 subjects with LVSD would have been missed, however 64% (n = 255) of subjects would have been referred for echocardiographic investigation.

Individual clinical symptoms and signs

Common symptoms and signs associated with HF were evaluated; most of these performed inadequately. However, a normal ECG reliably ruled out LVSD in about half of subjects (NPV 97%, proportion testing negative 46%) missing only 1 in 7 cases (sensitivity 85%; see Table 2). Previous MI was an unreliable marker; missing 3 of 4 cases of LVSD (sensitivity 24%) and 9 of 10 cases of HFpEF (sensitivity 12%).

Test combinations

Combinations of ECG, clinical symptoms and signs, BNP and NT-proBNP and blood markers were investigated; there was no increase in the balance of diagnostic performance when various combinations were analysed. A range of test combinations were explored using ‘abnormal ECG’ as a starting point to reflect clinical guidelines. Individually, a natriuretic peptide test had a greater area under the curve than in combination with an abnormal ECG or other sign or symptom. ECG results did not increase diagnostic precision if added to a natriuretic peptide test and clinical assessment (see Table S1 for further details and test combinations).

Incidental clinical findings

A high proportion of residents had test results outside the normal range which may have indicated conditions other than HF (see Table S2). For example, one quarter had raised creatinine; 51% had raised urea; 7% had a raised serum troponin. Other more definitive diagnoses included two residents whose study assessment resulted in an urgent referral for a permanent pacemaker, and one who needed reassessment for a substantially elevated blood pressure.

Discussion

The study used consultant-interpreted portable echocardiography as a reference standard to diagnose HF due to LVSD and HFpEF in the older long-term care population. Against this reference a wide range of tests and clinical symptoms and signs were evaluated for the first time in this older institutionalised population, including the first formal evaluation of the diagnostic utility of several novel biomarkers. Diagnostic assessments (including echocardiogram and venepuncture) were feasible and acceptable.

BNP and NT-proBNP provided reasonable rule out tests for LVSD, reducing by about two-thirds the need for referral for echocardiographic assessment, and may appear cost-effective. However, by this route one in four patients would be missed, delaying diagnosis and effective treatment. Our findings indicate the limited utility of hs-CRP, copeptin, MP-proADM and MP-proANP in this population. There were no adequate diagnostic tests for HFpEF [32], which may be an important issue as consensus for treating HFpEF emerges. Thus sole use of individual biomarkers may not currently be sufficient for appropriate decisions about care pathways in this population [33].
For all tests, using lower test thresholds (enhancing ‘rule-in’) would reduce the number of missed cases of HF but result in unacceptably large numbers of patients falsely testing positive (thus requiring echocardiography) meaning that the utility of current tests is limited. Current NICE guidelines [9] recommend automatic referral for echocardiography for people with previous MI and natriuretic peptide screening for those without. The performance of BNP and NT-proBNP was marginally improved when limited to residents without previous MI (see Table 2).

Study limitations

The level of heart failure in the study population [LVSD 34/399; HFpEF 57/399] was modest, and the possibility of missed heart failure cannot be completely ruled out even with echocardiography. Samples were derived from a prevalence study [22]; thus an increase in numbers was not feasible here. While this study has highlighted the need for differentiation in biomarker cut-offs for this population, larger scale studies are required to confirm the performance of these novel and routine biomarkers in this population.

There is wide variation in previously reported cut-off values for NT-proBNP and BNP for older people. Used as a rule-out test for LVSD, our findings suggest NT-proBNP and BNP cut-offs of 1000 pg/ml and 145 pg/ml respectively. These values differ from those reported by others studying similar populations, which at 93-450 pg/ml for NT-proBNP and from 40–100 pg/ml for BNP [1,7,8] are more similar to the thresholds in this study for HFpEF (477 pg/ml and 110 pg/ml respectively). It is possible that previous studies have included undifferentiated HF (LVSD and HFpEF), where there is no evidence of a differential diagnosis or separate cut-off values. The low prevalence of LVSD in this study (34/399) prevented sub-group evaluation of biomarker performance according to gender, age or disease severity. However, rates of HFpEF were higher than anticipated (57/399). A similar overall prevalence of HF in our findings and those of others may reflect a lack of historical differentiation between HFpEF from LVSD. The high incidence of HFpEF detected suggests the need for further research in this population, in order to establish clear treatment guidelines [34].

Participant recruitment was challenging due to organisational barriers as well as residents’ physical and cognitive limitations. Nonetheless one third of those approached participated. While baseline demographics of participants and non-participants were similar it is possible that non-participation occurred, in part, as a result of a higher burden of ill-health. We recognise that screening asymptomatic patients does not reflect routine clinical assessment, where doctors may attend on the basis of symptoms suggesting HF or other disease. On-site assessment using echocardiography was acceptable and feasible to older people in care but remains a time and resource-intensive option. A simple, definitive test for HF in this population is elusive. Until such a test emerges, echocardiography remains feasible and acceptable to residents, and home-based access would offer optimal diagnosis when access to other service configurations may be problematic.

Conclusion

No biomarker test, individually or in combination, adequately balanced case finding and rule-out for heart failure in this population; currently, in-situ echocardiography provides the only adequate diagnostic assessment. Commissioners and policy makers
should consider the routine provision of on-site portable echocardiography, particularly if, in addition to LVSD, consensus emerges about the appropriate treatment of HFpEF.

Supporting Information

Table S1 Diagnostic test performance (area under the curve) of combinations of diagnostic markers, signs and symptoms in detecting LVSD.

Table S2 Findings of tests not specific to heart failure.

References

Acknowledgments

The authors wish to thank Mrs Rebecca Maier and Miss Jennifer Wilkinson (Durham Clinical Trials Unit) for their roles in overseeing research governance, data management and processing.

Author Contributions

Undertook data collection: RS EW GB NH NK NM DH. Read and approved the final manuscript: JMM HCH HC JMF AB MdB RS AT EW GB NH NK NM DH DW APSH. Conceived and designed the experiments: JMM HCH HC JMF AB MdB APSH. Performed the experiments: AT. Analyzed the data: JMM HCH HC DW MdB. Wrote the paper: JMM HCH HC JMF AB MdB APSH.