We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains.

Menshikov, M. V. and Vachkovskaia, M. and Wade, A. R. (2008) 'Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains.', Journal of statistical physics., 132 (6). pp. 1097-1133.


We study stochastic billiards in infinite planar domains with curvilinear boundaries: that is, piecewise deterministic motion with randomness introduced via random reflections at the domain boundary. Physical motivation for the process originates with ideal gas models in the Knudsen regime, with particles reflecting off microscopically rough surfaces. We classify the process into recurrent and transient cases. We also give almost-sure results on the long-term behaviour of the location of the particle, including a super-diffusive rate of escape in the transient case. A key step in obtaining our results is to relate our process to an instance of a one-dimensional stochastic process with asymptotically zero drift, for which we prove some new almost-sure bounds of independent interest. We obtain some of these bounds via an application of general semimartingale criteria, also of some independent interest.

Item Type:Article
Keywords:Stochastic billiards, Rarefied gas dynamics, Knudsen random walk, Random reflections, Recurrence/transience, Lamperti problem, Almost-sure bounds, Birth-and-death chain.
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Publisher statement:The original publication is available at
Date accepted:No date available
Date deposited:31 January 2013
Date of first online publication:2008
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar